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Abstract
Successful training in complex environments is normally accomplished through the interaction
of a trainee and a skilled expert, but experts are an expensive commodity. Using an optimal
model of task performance subject to human constraints may be a more efficient way to develop
models of skilled human performance for use in training, especially since optimal models are
simpler to validate, test, and debug than corresponding expert models. In addition, constrained
optimal models can be constructed in domains where no experts are available or even exist.
Using a simulated task environment (STE) permits the necessary close model-trainee interaction
by enabling the construction of optimal performance models that perform the same task as the
trainee using the same interface while closely observing and guiding trainee performance. We
have developed a methodology for using a normatively correct task model as the core engine of
an automated tutor for a national missile defense (NMD) task STE. This methodology has
allowed us to explore: 1) the relative impact of expert versus optimal feedback, 2) the locus of
learning within the NMD task, 3) the differential impact of providing feedback on strategy
selection, and 4) methodologies for constructing tutors directly from expert performance data.

Anticipated Benefits and Potential Commercial Applications
The completion of Phase I of this project has produced a cognitive modeling methodology for
developing human behavior representation systems that has the potential to avoid many of the
shortcomings of the knowledge engineering approach to authoring those systems. The approach
detailed in this report yields realistic and accurate models of normative and expert performance
while minimizing the investment that must be made to produce and maintain those models.

This architecture has the potential to form an ideal core for developing automated training
systems for the military, teaching humans to perform complex tasks and assessing their
performance in sustained operations. Example applications include piloting an unmanned aerial
vehicle, operating an emerging weapon system, and allocating ground based interceptors in a
missile defense environment.

Beyond the training domain, this approach could be used in any application requiring accurate,
affordable human behavior representation. For example, it could be used to implement
autonomous robot navigation in an interior space. It could form the core of an intelligent
assistant in a decision support system. It could be used in human-computer interface design. It
could be used to create a model of "typical" (vs. expert) human performance, which could then
be used to represent a believable human entity for Computer Generated Force (CGF)
experiments.

The most obvious commercial products to come from this effort would be more effective
automated training systems, constructed with much less time and money than is currently typical.
The ability to accurately model expert and normative performance could transform something
like the Microsoft Paper Clip from an annoying distraction into a truly useful assistant. This
research could even have an impact on the development of computer generated avatars and non-
player characters for the computer gaming industry.
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The results of this research are also applicable, as has already been demonstrated for the
Traveling Salesperson Problem, to solving problems which are intractable using traditional
computational methods, but which become quite tractable when the problem representation
exploits the kinds of representations and processes used by humans in solving the problem.

Introduction
We have developed the concept of using a normatively correct model of task performance as the
core engine of an automated tutor with an initial application to a national missile defense (NMD)
task STE. The NMD STE is a complex task requiring skilled operators to allocate assets under
time constraints to minimize expected losses, yet is amenable to construction of an optimal
model, and therefore allows us to explore a normative modeling-based tutoring approach. In this
task, trainees allocated some number of ground based interceptors (GBIs) to protect five cities
from a likely nuclear attack. The four main technical objectives for Phase I of this research are
as follows:

1. Investigate the different consequences of a normative vs. an expert model. These two
approaches may lead to different performance of the model itself, and as the basis for a
training system. That is, an expert model may or may not perform the task as well as an
optimal system, and an optimal system may or may not direct a training session as well as
an expert model. This makes it important to determine the ways in which the two
approaches differ and whether these differences offer different advantages or
disadvantages for tutoring. We will conduct this analysis in the context of the NMD task
and attempt to extend this understanding to other domains. (The distinction between
normative and (human) expert performance is an important, general issue in training,
developing tutoring systems, and in understanding expertise. What we find here will
likely transfer to training issues in other domains.)

2. Build on an existing model of normative performance in NMD task to incorporate results
from recent research on decision-making biases (e.g., framing effects). This will allow
us to explore whether optimal training can result simply from guidance in optimal
behavior, or whether add-on of refinements based on current research can enhance
training. The NMD task is particularly appropriate for this purpose because framing
effects are known to occur in this task, and the augmentation of an optimal model with
the intention of countering these biases would be straightforward. That is, training with
an optimal model may result in human performance that is a product of optimal behavior
and their existing biases. It may be possible to augment the optimal model in a way that
results in the reduction or elimination of their existing biases beyond that which can be
accomplished using a pure optimal model.

3. Develop a model of (relatively) expert human performance based on empirical data. This
model will be a process model of performance that also offers an interesting comparison
to the normative and augmented normative models discussed above. For example, by
using this model it would be possible to determine if there is a continuum from normative
to expert to novice performance or whether there are qualitative differences between the
categories. The effect on training of optimal vs. expert model will be studied by
switching the models while keeping the rest of the training apparatus constant, which will
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provide empirical evidence as to whether better performance is preferable in a tutoring
model to human-like processing.

4. Investigate the cognitive limitations of human performance and the associated individual
difference variables. It is possible that human performance is effectively optimal given
the constraints imposed by the perceptual system, memory system, etc. By carefully
comparing human performance with the various models proposed above, it should be
possible to isolate the factors that influence human performance on the task. In the
human performance model, one could then investigate how variations in the key
individual difference variables (such as working memory capacity, perceptual speed)
influence overall performance. This will extend the work done by Lovett, Reder, and
Lebiere (1999)1. One can also evaluate the impact of individual differences on learning,
such as speed of learning and choice of strategies.

Overview of Completed Research
Phase I of this research focused on using an optimal algorithm to design a training tutor for a
complex task. In this task, a national missile defense (NMD) task, trainees allocated some
number of ground based interceptors (GBIs) to protect five cities from a likely nuclear attack.
The task, which requires balancing the probabilistic expectations of lives saved and lost with the
possibility of future attack, is a difficult task for students to master. In fact, students using the
interface in the absence of a tutoring program are still learning after several days of practice and
training, and have difficulty in applying the mathematical model of expected lives saved to the
real-time problem of GBI allocation. Part of this difficulty appears to be that, though the optimal
model is straightforward, there is no easy way for students to induce that model while
performing the task - they are busy completing the task and the workload precludes them from
deducing a better way to do the task. This forces them to apply a more general heuristic, which
appears in this case to be a memory-based matching process. However, the memory they have
for various configurations of city populations, GBIs, and the resulting outcomes are, due to the
fact that they are learning the task, rife with errors and suboptimal decisions. That is, these
students are forced to bootstrap their learning onto their own initial guesses and are left
attempting to improve on that performance. This choice of a training domain, as a result, is an
ideal domain for constructing a training tutor to help students learn the correct strategy, and has
led us to develop a method for constructing a training tutor based on the optimal model of
problem performance.

Our first attempts involved training mathematics experts to directly implement the optimal
strategy. However, many of the steps in this strategy, though known by the expert, were simply
too demanding in terms of time required, working memory demands, etc., to be carried out in the
time allotted during the NMD task. We realized that instead we needed to express the optimal
algorithm in a way that was computable by people within the time allowed for task completion.
Our preliminary findings indicate that a viable method of constructing a training tutor is to
encode the optimal algorithm within the framework of a cognitive architecture. This leads
straightforwardly to the imposition of the constraints of the cognitive architecture (i.e., human

I Lovett, M. C., Reder, L. M., & Lebiere, C. (1999). Modeling working memory in a unified architecture: An ACT-R
perspective. In A. Miyake & P. Shah (Eds.) Models of Working Memory. pp. 135-182. Cambridge, MA:
Cambridge.

5



Optimal Training Systems STTR Phase I Final Report Micro Analysis & Design, Inc.

limitations) on the optimal algorithm, which in turn produces a near optimal algorithm that a
trainee is capable of performing. The task then becomes training the student in that near optimal
strategy. The primary innovation here is the use of the limitations encoded in a cognitive
architecture to prevent, or at least make extremely difficult, the expression of an algorithm that
exceeds the information processing capabilities of the trainee. That is, if a process or algorithm
can be written in the language of a cognitive architecture, it can be leamed and performed by a
human trainee. This approach represents a novel departure from the traditional approaches in
automated training. As such, the methodology developed in the course of this research bears
further description, and will be presented below along with the other results of the Phase I
research.

Lessons Learned about the NMD Task Structure from Pilot
Studies

Human Performance
The NMD task, which requires balancing the probabilistic expectations of lives saved and lost
with the possibility of future attack, is a difficult task for students to master. In fact, students
using the interface in the absence of a tutoring program are still learning after several days of
practice and training, and have difficulty in applying the mathematical model of expected lives
saved to the real-time problem of GBI allocation. Part of this difficulty appears to be that,
though the optimal model is straightforward, there is no easy way for students to induce that
model while performing the task - they are busy completing the task and the workload precludes
them from deducing a better way to do the task. This forces them to apply a more general
heuristic, which appears in this case to be a memory-based matching process. However, the
memory they have for various configurations of city populations, GBIs, and the resulting
outcomes are, due to the fact that they are learning the task, rife with errors and suboptimal
decisions. That is, these students are forced to bootstrap their learning onto their own initial
guesses and are left attempting to improve on that performance. This choice of a training
domain, as a result, is an ideal domain for constructing a training tutor to help students learn the
correct strategy, and has led us to develop a method for constructing a training tutor based on the
optimal model of problem performance.

Preliminary Modeling Findings
Our first attempts involved training mathematics experts to directly implement the optimal
strategy. However, many of the steps in this strategy, though known by the expert, were simply
too demanding in terms of time required, working memory demands, etc., to be carried out in the
time allotted during the NMD task. We realized that instead we needed to express the optimal
algorithm in a way that was computable by people within the time allowed for task completion.
Our preliminary findings indicate that a viable method of constructing a training tutor is to
encode the optimal algorithm within the framework of a cognitive architecture. This leads
straightforwardly to the imposition of the constraints of the cognitive architecture (i.e., human
limitations) on the optimal algorithm, which in turn produces a near optimal algorithm that a
trainee is capable of performing. The task then becomes training the student in that near optimal
strategy. The primary innovation here is the use of the limitations encoded in a cognitive
architecture to prevent, or at least make extremely difficult, the expression of an algorithm that
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exceeds the information processing capabilities of the trainee. That is, if a process or algorithm
can be written in the language of a cognitive architecture, it can be learned and performed by a
human trainee.

Redesigning the NMD Task
Our pilot studies had demonstrated that the NMD task in the form it has been studied is
fundamentally intractable from a human cognitive perspective. The task interface prevents
making progress on the problem until only a small amount of time is available to complete it, and
this remaining time is insufficient for any amount of cognitive activity that can even start to
approximate a good solution. This forces participants into a rapid decision process which, in the
absence of a body of experience from which to draw, forces participants into generally inferior
decisions and hampers learning.

As a result of these difficulties, we have extended the NMD task with two goals in mind: 1)
provide a task environment where a high level of performance is, at least in theory, achievable,
and 2) provide feedback in several forms that could be reasonably expected to impact learning in
the task. This feedback comes in two primary forms: immediate, stepwise feedback, and
delayed, holistic feedback. The key distinction between these is that immediate feedback can be
expected to impact the solution process, while delayed feedback is more inclusive of a variety of
strategies.

Methodology for Developing a Training Tutor Using an Ideal
Cognitive Model
We have identified two primary ways to develop a training tutor based on an ideal or optimal
model. The first of these methods, the generation of a near-optimal model from an optimal
model, involved producing an ACT-R cognitive model of task performance from the algorithmic
specification of the optimal model. The ACT-R architecture imposes a set of human constraints
on processing that produce performances that are less than optimal (i.e., not perfect), but which
are, as a result, learnable. The second method, the induction of an expert model from a trace of
expert human performance, involved producing an ACT-R cognitive model of task performance
using the learning aspects of the architecture to imitate the observed actions of a human expert.

The model induction approach leverages instance-based learning techniques based on the ACT-R
cognitive architecture2 to model the underlying decision processes that operate on problem
abstractions having ideal (optimal) solutions. Problems with ideal solutions provide a unique
environment for studying human decision-making, since the decisions can be situated in the
context of ideal performance, making it possible to isolate both areas where human performance
is lacking, and areas where human performance challenges or exceeds the best artificial
intelligence approaches.

One example problem domain where this technique has been applied is the Traveling
Salesperson Problem. The Traveling Salesperson Problem (TSP) is a computationally hard (NP-
complete) problem where time complexity of the best known solutions scales exponentially in
proportion to the number of "cities" (points) that must be visited exactly once on a sales route.

2 Anderson, J. R. & Lebiere, C. (1998). The atomic components of thought. Mahwah, NJ: Erlbaurn.
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Best (2004)3 demonstrated that human solvers tackle a much simpler problem than the
unconstrained TSP by using hierarchical clustering and goodness of path determination based on
established cognitive principles to reduce the problem to one that can be solved in linear time in
the number of cities. This finding was validated through the construction of a computational
model that also predicted solutions that were linear in time given the cognitively constrained
representation, and through a demonstration that human solvers did not need or use non-local
high-frequency spatial information to solve the problem. The key to capturing human
performance in this task was determining the global structure solvers used to organize the
problem-solving episode, and uniting this with a local process that captured individual decisions.

Capturing individual decision-making with instance-based modeling
Instance-based models of human performance have been constructed for many individual
decision processes. For example, Lebiere, Wallach, and West (2000)' showed how the
fundamental memory processes encoded in the ACT-R cognitive architecture can account for
human behavior in games such as the Prisoner's Dilemma, a game in which a payoff matrix
specifies positive and negative payoffs based on not just the player's move, but the opponent's
move as well (games like this are of particular interest to economists since many economic
systems can be analyzed in game-theoretic terms). In this case, the human performance was
captured through two simple uniform architectural processes - power law learning and decay,
and stochasticity - which were incorporated into a general strategy based on determining the
most likely outcome given each of the player's potential moves, and choosing that move with the
best of the likely outcomes (stochasticity is essential to prevent the opponent from making easy
predictions of the player's strategy). The ACT-R equation that produced both adaptation and
stochastic behavior for this model is given below:

ln s• s n*Ld -d's
A=In -IN(O ) In + N(O, )

j=3 1 --d

The first term of this sum represents the strengthening in memory of a particular piece of
information (a chunk) each time it is either retrieved from memory or (re)created. In this term, tj
represents the time since thelth reference, while n is the number of references to the chunk, and d
is the decay rate. The implications of this formula are that activation increases with use and
decreases with time with a functional form that produces both the power law of learning and the
power law of decay. Assuming even distribution of the chunk references over time allows for
approximating activation with the shown function of decay, number of chunks, and total life of
the chunk, L. Stochasticity is provided by the second term of the sum, normally distributed noise
with a mean of 0 and a standard deviation determined by the activation noise parameter, s.
These relatively simple equations provide the basis for instance-based learning and decision-
making within the ACT-R architecture.

3 Best, B. J. (2004). Modeling Human Performance on the Traveling Salesperson Problem: Empirical Studies and
Computational Simulations. Doctoral dissertation, Department of Psychology, Carnegie Mellon University,
Pittsburgh, PA.
4 Lebiere, C., Wallach, D., & West, R. L. (2000). A memory-based account of the prisoner's dilemma and other 2x2
games. In Proceedings of International Conference on Cognitive Modeling, 185-193. NL: Universal Press.
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Our work on the NASA Human Performance Modeling project (see related work section) used
an instance-based decision process within an ACT-R model of a pilot's behavior during an
approach and landing task. In this case, the flight control inputs were determined by the pilot
model by retrieving prior behavior from memory (e.g., given a certain altitude and airspeed,
recall the appropriate setting for the flaps and adjust the controls to that setting if they are
different). By seeding the system with several instances of typical pilot behavior (correct
exemplars), the model was able to behave across a range of situations it had never seen before.
In general, instance-based techniques such as the method described here naturally generalize to
situations which are similar to those that have been seen before, but are not exact matches to
previous situations or behavior.

Gunzelman, Anderson, and Douglass (submitted)5 have used the instance-based approach to
account for a basic decision process in a model of human behavior in a spatial localization task
within the ACT-R framework. The decision to be made is the selection of a point on a two-
dimensional view of a scene (a view of a circular field containing an arrangement of identical
conical objects from above) that corresponds to the viewpoint shown in a three-dimensional view
of the scene (a viewer-centered perspective from an arbitrary location on the perimeter of the
field facing the center of the field). If the chosen point falls within fifteen degrees of the actual
location, the response is coded as correct. Otherwise, the trainee receives feedback indicating an
incorrect solution.

The modeling approach taken by Gunzelman et. al. was to have the model choose whether to
respond at a particular moment in time based on the information accumulated at that point and
memory for success and failure of previous decisions given varying amounts of information.
Although the model will often make correct decisions (hits), occasionally, this decision model
will also make errors by responding positively in the absence of enough evidence (false alarms).
This model may also choose not to respond when it has sufficient evidence (misses), or choose
not to respond where there is not sufficient evidence (correct rejections).

This can be seen as an encoding of a basic signal-detection process at the output stage of a
cognitive decision process. More information increases discriminability, while the success and
failure of previous similar decisions biases the system towards either responding or seeking more
information. Using this decision framework, bias and discriminability can be manipulated
through modifying architectural parameters. This allows for straightforward modeling of
individual differences on a variety of tasks (and, in fact, potentially for the same individual
across tasks) and the study of the impact of these individual differences on the acquisition of the
skill in question.

5 Gunzelmann, G., Anderson, J. R., & Douglass, S. (submitted). Orientation tasks with multiple views of space:
Strategies and performance. Spatial Cognition and Computation.
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Human Performance on the NMD Feedback Task

The National Missile Defense (NMD) Task
The version of the NMD task that is being discussed in this report is primarily the augmented
NMD task rather than the original version. However, the inspiration for the augmented version
came directly from the preliminary modeling studies, so this section will discuss both versions of
the task.
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F ... onto Remaining another attack on a city of 3,104.248
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Figure 1. The National Missile Defense (NMD) Task Interface

The screen shot above shows the primary NMD task display, which consists of a panel
containing a set of cities, each of which has a population and some assignment of ground based
interceptor (GBI) missiles to defend it from possible attack. The center bottom of the display
shows the number of GBIs used and remaining in reserves while the lower left portion of the
screen is focused on a countdown. The number of GBIs used is represented using a color bar
and a slider control. The population and percentage of savings of life can be read off of the area
for each city, most easily by paying attention to the area produced by combining these measures.
The green areas above, then, represent the lives that will be saved by allocating the missiles as
chosen above.

In addition to this screen, every trial gives one of three forms of feedback: 1) a summary of what
the student chose to do, 2) an after-action review of the outcome of the actions taken by the
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student and a comparison to optimal allocations, and 3) stepwise feedback during problem
solution in the form of beeps when the student strays off of the optimal solution path. The screen
shot below shows a screen from the elaborative feedback condition:
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Fgr . N Your
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Figure 2. NMD Task Feedback Screen

Comparison among Feedback Conditions

This section describes the results of a study of human performance in the NMD task under
various feedback conditions. The goal is to describe the nature of performance relative to optimal
and to evaluate which of the training conditions tested was most effective.

The method was straightforward. Participants were recruited to complete the NMD task and
several others for pay. For the NMD task, they read a powerpoint file with instructions (see
Appendix 4 for the instructions), saw a brief demonstration of the task interface and began
working through the NMD scenarios (also referred to as trials, below). Each scenario was drawn
at random from a set of possible scenarios with 5 different city populations, a follow-on
probability of attack on a 6 th city (either .25 or .75) and a population for the 6 th city. Participants
completed 72 trials in two blocks of 36 trials each.

11
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Recall that the optimal algorithm for this task can be defined in terms of a sequence of moves
(i.e., GBI allocations), for which the next move taken is always the one that produces the largest
increase in the expected value of lives saved (or, similarly in the "lives lost" frame, the largest
decrease in the expected value of lives lost). With this specification of the optimal strategy, each
step can be defined as on or off the optimal solution path. Moreover, this allows the application
of an immediate feedback strategy like that used in cognitive tutors (Anderson, Corbett,
Koedinger, & Pelletier, 1995)6, namely, where students' problem-solving steps are
communicated to the intelligent tutoring system through a computer interface and the intelligent
tutor interrupts with feedback only when their step is off a known solution path. In our case of
training participants to produce an optimal solution in the NMD task, we have implemented a
version of this feedback scheme that we call "stepwise feedback." It is just like the immediate
feedback approach used in cognitive tutors with the following two exceptions: first, participants
are interrupted when their step is off the optimal path (not just off a known solution path), and
second, the nature of the feedback is a simple beep, indicating to participants that their move was
in error. While previous research has shown that highly refined feedback messages can lead to
improved learning outcomes (over that attained with more simple feedback), there are no clear
principles to guide the design of such feedback messages that would apply to the NMD task.
Moreover, our goal in developing the stepwise feedback training condition was to evaluate
whether simply providing some minimal, immediate feedback regarding whether each step was
on the optimal path would produce improved learning gains. Note that the NMD software was
adapted for this training condition so that each time a participant locked in a particular increase
or decrease in GBI allocation to a particular city, the software would compare this re-allocation
with the next move in the optimal solution. If the participant's move did not match the next
optimal move, the software would produce an immediate beep. Otherwise, the participants would
be left to continue their work without interruption.

To evaluate the stepwise feedback condition, we compared its effectiveness along several
measures to the effectiveness of the two other conditions- outcome feedback and summary
feedback. In the "outcome" condition, participants are shown, after each trial, a table aligning
the GBI allocations they chose for each city with the GBI allocations of the optimal solution as
well as expected values of lives saved/lost. In the "summary" condition, participants received no
feedback after each trial and only at the end of each set of trials were shown more generically
how well they had performed. Note that the outcome condition is somewhat similar to conditions
that have been used in other research on the NMD, in which participants received feedback on
their solution after each trial. The key distinction between the outcome and the stepwise
feedback conditions is whether the feedback involves the solution and comes at the end of each
trial (outcome condition) or each step toward a solution and comes continually within each trial
(stepwise condition).

One measure for comparison among the three conditions is the distance from optimum,
calculated as the difference in expected value of lives saved/lost for the optimal GBI allocation
versus the participants' GBI allocation (averaged across all trials). Figure 3 shows a boxplot of
these averages by condition. An ANOVA reveals there is a significant difference among the
three groups, F(2, 17) = 5.68, p < .05). As visual inspection of the medians suggests, there is a

6 Anderson, J. R., Corbett, A. T., Koedinger, K., & Pelletier, R. (1995). Cognitive tutors: Lessons learned. The

Journal of Learning Sciences, 4, 167-207.
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significant difference between the summary condition and the other two (p < .05 for both) but
not a significant difference between the outcome and stepwise feedback conditions. It is worth
noting that the stepwise feedback condition shows much greater variability in this distance-from-
optimal measure, with a standard deviation of 57,725 and a range of 159,972 - 78 = 159,894
whereas the outcome condition had a standard deviation of 25,693 and a range of 101,000 -
30,852 = 70,148.
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Figure 3. Differences among conditions in the average distance from optimal solution. Condition
1=Summary; Condition 2=Stepwise, Condition 3=Outcome.

It is possible, however, that the randomization of participants into conditions was not quite
adequate and that, in particular, the stepwise feedback participants were for some unknown
reason a slightly different sample from those in the other two conditions. If so, this could partly
explain why the stepwise condition's performance was not significantly better than the outcome
condition's. To begin to investigate this issue, trial 1 performance on this measure (difference
from optimal solution) is plotted across the three groups in Figure 4. Although there is not a
significant difference among the conditions, F(2, 16) < 1, the greater variability among the
stepwise feedback condition is again evident, suggesting that indeed there may be some a priori
differences among the groups. We will investigate this further when we address the question of
individual differences (see section on individual differences below).
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Figure 4. Distance from optimal solution for trial 1 across conditions. Condition I=Summary; Condition
2=Stepwise, Condition 3=Outcome.

Another measure of the effectiveness of the conditions involves assessing how sensitive
participants were to different factors that made individual scenarios difficult. We had two a priori
hypotheses regarding what factors would make problems difficult. One was that scenarios where
the optimal GBI allocation involved leaving at least one city with no GBIs would be particularly
difficult. This hypothesis was based on previous research with the NMD task7 and followed the
idea that participants would not want to leave a city completely unprotected. The second
hypothesis involved the number of GBIs that were to be held in reserve under the optimal
solution. This hypothesis stemmed from the idea (also based on past work) that participants
would focus more on the cities highlighted in the display and be both less aware of the
consequences for the follow-on city and less able to perform the adequate computations for GBI
allocation for the follow-on city. The second hypothesis was not supported: Measures of
participant performance did not differ as a function of optimal number of GBIs to be allocated to
the follow-on city. However, the first hypothesis was supported by the data in that participants'
average distance from optimal was higher (i.e., worse) on scenarios where the optimal allocation
left at least one city unprotected (i.e., with 0 GBIs allocated to it): 150,237 vs. 82,645.

This sensitivity to this difficulty factor, found over all participants on average, provides a means
for comparing among the conditions because it allows us to test the degree to which the different
training conditions enabled participants to avoid the "trap" of allocating at least some GBIs to all

7 McDermott, P., Hutchins, S., Barnes, M., Koenecke, C., Gillan, D., & Rothrock, L. (2003). The presentation of
risk and uncertainty in the context of national missile defense simulations. Proceedings of the Human Factors and
Ergonomics Society 46th Annual Meeting. 13-17 October, Denver, CO.
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cities rather than keeping in mind the criterion for optimal solution - maximizing the expected
value of number of lives saved. In other words, one would consider training more effective if
participants performed well regardless of this difficulty factor. Figure 5 shows the relevant data:
participants' distance from optimal solution for difficult and easy scenarios, across the three
conditions. The interaction in these data shows a similar pattern as the previous "distance from
optimal" results, namely, that the stepwise condition and the outcome condition perform almost
indistinguishably (both are relatively insensitive to scenario difficulty), while the summary
condition performs worse (shows more sensitivity to scenario difficulty).

300000

250000

1200000
E +Summa ry

150000 - -4-Stepwise
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0
1 2

Scenario Difficulty

Figure 5. Sensitivity to difficulty factor (optimal solution involves leaving a city with 0 GBls) across
conditions. On the x-axis 1 represents "difficult" scenarios where the optimal solution did involve leaving a
city with 0 GBIs, and 2 represents "easy" scenarios where the optimal solution did not involve leaving a city
with 0 GBIs.

Finally, another measure along which we can compare across conditions is latency, namely, how
long participants took on average to make their GBI allocations for each trial. Note that there
was a maximum time allotted for GBI allocation and the nature of the task display invited the
idea that time was critical (i.e., several clocks ticking down to impact time!), so finding any
difference here would mean that the fastest group had acquired a better level of efficiency
throughout their training.
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Figure 6. Average latency across conditions. Condition l=Summary; Condition 2=Stepwise, Condition
3=Outcome.

Figure 6 shows the average latency across conditions. As this display suggests, there was a

significant difference among conditions, F(2, 17) = 6.59, p < .01. In particular, post-hoc tests
revealed that the effect stems from the stepwise condition being significantly faster than both of
the other conditions (p < .05). Figure 7 shows this effect across time, emphasizing the fact that
the stepwise group is able to make GBI allocations rather efficiently from the beginning and

speeds up from there, whereas the other two groups start slower and speed up but do not quite
reach as low a latency by the end of training.
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Figure 7. Latency across trials and across conditions

To summarize this section comparing the three conditions, it appears that both the outcome and
stepwise feedback conditions were more effective than the summary condition when
participants' ability to come close to the optimal solution was assessed and when this ability was
assessed as a function of scenario difficulty. The outcome and stepwise feedback conditions,
however, were not significantly different from each other in these two measures of effectiveness.
They did diverge, however, when the measure of latency was explored. Here, the result was that
the stepwise condition was faster (even compared to the outcome condition) and showed a
significant speed-up over the course of training. The nature of the learning in the stepwise group
and how this condition achieved greater efficiency (as measured via step latency) will be
explored in the next subsection.

Learning
As discussed above, the stepwise feedback condition performed as well as the outcome condition
but was able to achieve that performance level with faster GBI-allocation times. This kind of
training advantage, equal performance with faster learning, is a relatively common result in the
intelligent tutoring literature (e.g., Anderson, Conrad, & Corbett, 1989)8. In the case of the
stepwise condition of the NMD task, achieving greater efficiency is an expected advantage of the
immediate feedback central to that condition.

8 Anderson, J. R., Conrad, F. G., & Corbett, A. T. (1989). Skill acquisition and the LISP Tutor. Cognitive Science,

13, 467-506
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Because of the nature of the feedback in the stepwise condition, an additional performance
measure representing their accuracy and efficiency within each trial can be tracked for each
participant. This measure is the proportion of steps within each trial for which the participant
makes the next optimal allocation. In other words, this measure is the proportion of the time the
stepwise feedback did not have to be given to alert participants to a step that was off the optimal
path. Figure 8 shows the average of this measure over all participants in the stepwise feedback
conditions across all trials of training. Although the learning curve here is somewhat bumpy,
there is a significant upward trend that is well fit by both a linear and power curve. Also, note
that the vertical line indicates the switch between block I and block 2, which not surprisingly
matches one of the decreases in the curve.
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Figure 8. Learning curve across trials for stepwise feedback condition.

This measure can be conceived of both as an accuracy measure and an efficiency measure. It is
an accuracy measure because it calculates the proportion of steps a participant has followed the
optimal algorithm of always allocating the next GBI that will produce the largest increase in
lives saved. This measure also assesses efficiency because the higher the proportion of steps that
are on the optimal path the more systematically and efficiently the participant is following this
strategy for optimal solution.

This measure of optimality on a step-by-step basis should be correlated with our end-of-trial
measure of distance from optimal solution, so as a check on our variables and as a means of
establishing the validity of this step-by-step accuracy measure, Figure 9 plots these two variables
for each of the participants in the stepwise feedback condition. A linear trend line has been
added, r = -.76. Note that this correlation would be predicted to be negative rather than positive
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because the step-by-step measure calculates accuracy - higher is better - whereas the end-of-trial
measure calculates distance from optimal - lower is better.
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Figure 9. Association between two measures of accuracy for the stepwise condition.

Individual Differences
Along with the NMD task, participants completed several additional tasks designed to measure
various individual differences in cognitive processing and other differences in aptitude and past
experience. These tasks included short questionnaires asking about participants' Math SAT score
and previous coursework in math and statistics/probability, a working memory span task (Engle,
Kane, & Tuholski, 1999)9, and a risk-taking assessment questionnaire.

The question for this aspect of the research was whether any of these individual difference
factors would predict to some degree participants' ability to produce optimal solutions. The
results in this regard did not provide strong evidence for any some relationships. All of the
correlations were below .32. The strongest, at r=-.3 19 was between number of math courses and
distance to optimal, where a negative correlation would make sense. Still, this is a rather weak
relationship, as can be seen in Figure 10.

9 Engle, R.W., Kane, M.J. & Tuholski, S.W. (1999). Individual differences in working memory capacity and what
they tell us about controlled attention, general fluid intelligence and functions of the prefrontal cortex. In Miyake, A.

& Shah, P. (Eds.) Models of working memory: Mechanisms of active maintenance and executive control.
London:Cambridge Press.
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Figure 10. Association between math courses and distance from optimal.

Modeling the NMD Task
One of our primary goals in modeling the NMD task is to investigate the different consequences
of a normative vs. an expert model. These two approaches may lead to different performance of
the model itself, and as the basis for a training system. An expert model may or may not perform
the task as well as an optimal system, and an optimal system may or may not direct a training
session as well as an expert model. This makes it important to determine the ways in which the
two approaches differ and whether these differences offer different advantages or disadvantages
for tutoring.

In addition, we also chose to investigate the differences between an expert model induced from
empirical data and an expert model constructed using knowledge engineering. It is important to
know if there is a continuum from normative to expert to novice performance or whether there
are qualitative differences between the categories. The effect on training of optimal vs. expert
model can be studied by switching the models while keeping the rest of the training apparatus
constant, providing empirical evidence as to whether faster and more accurate performance is
preferable in a tutoring model to more approximate human-like processing.

20



Optimal Training Systems STTR Phase I Final Report Micro Analysis & Design, Inc.

Models Developed for the Project

Pure Optimal Model
The first computational model developed as part of this project is a pure optimal computational
model. The algorithm is based on a simple hill-climbing principle that can be applied to
monotonic spaces like the NMD problem. Monotonic here means that the individual moves do
not interact, and will always have the same outcome. For example, a missile allocated in the
NMD task and then de-allocated would leave the trial in exactly the same state it was in prior to
the moves. Similarly, adding a missile to a city will always increase the protection afforded to
that city by the same amount regardless of what has been done elsewhere within the game.

Given this problem space, the construction of the initial algorithm was quite simple. The
algorithm is a simple iterative algorithm that always seeks to change missile allocations in the
direction of the greatest available gain. Since the excess missiles are initially in reserve, this
means that each allocation must save more lives than the decrease in reserves costs, and that no
allocation could save more than the chosen move. The algorithm terminates on the first iteration
that no new assignments are made. The entire algorithm is given below:

1. Set the Best eval to the number of lives saved by adding
a missile to protect City 1.

2. Set the BestCity to City 1.
3. Repeat the following steps until no further assignment

is made
a. For each City n, do the following:

i. Calculate the lives that would be saved by
adding a missile to protect the city.

ii. If the gain from adding this missile to City n
is greater than the current Best eval then do
the following:

1. Set the BestCity to City n.
2. Set the Best eval to eval n.

b. If the current Best eval will save more lives than
it will lose by removing a missile from the reserves
then assign it to the Best-City.

Rule-based Cognitive Model
Although the pure optimal model was conceptually straightforward, it was not obvious how to
leverage the algorithm in a teaching situation. To investigate the utility of the algorithm for
learning and teaching, we implemented the algorithm within the ACT-R cognitive modeling
framework. The intention of this effort was to cast the optimal algorithm into cognitive
operations, thereby providing both a task analysis and a potential mediating algorithm
simultaneously. Those cognitive operations can be largely characterized within the ACT-R
framework as the operation of production rules. An example of a production rule involved in the
task is presented here in pseudocode:
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If adding a missile to City B will save more lives than
adding a missile to City A then City B is currently the
best candidate location for a missile.

In this capacity, the ACT-R language served primarily as a programming language, but one that
introduced cognitive constraints. Although this use of the architecture is somewhat unusual, it
proved extremely useful from a task analysis perspective. In particular, the ACT-R architecture
provides high fidelity estimates for the speed of cognitive operations. The optimal algorithm, as
expressed in ACT-R, took more than a minute to complete an NMD trial using any reasonable
estimates of the speed of the constituent operations. However, the original NMD task was
temporally structured in a way that prevented students from interacting with the task for all but
the last few seconds of a trial. The original authors of the task may have intended for students to
work out much of the answer in their heads and then produce it using the interface at the end of
the trial. However, the mental arithmetic involved would constitute a substantial load if forced
into a short time frame. After some practice in attempting to apply the optimal algorithm to
solve problems, it became apparent that the task as structured could not easily or practically be
solved using the optimal algorithm, and it also raised questions about what method previous
participants had been using and what precisely the form of their learning was.

The entire optimal algorithm is presented in an appendix for completeness. The performance of
the algorithm, because it is not stochastic, and because time was not a serious consideration, is
completely unremarkable in every way: it produces the optimal answer exactly each and every
time (and thus produces completely trivial graphs and figures as well).

Instance-based Near Optimal Model

One of the primary technical objectives of this project is to investigate the utility of instance-
based modeling techniques based on a cognitive architecture to quickly develop high-quality
synthetic entities for training purposes. To this end, we constructed an NMD performance model
using the ACT-R cognitive architecture. This model, which is based on the rule-based ACT-R
model discussed above, will now be described in detail (a complete model run is presented in the
appendix).

Initially, the model starts with a particular scenario consisting, in the abstract, of five cities each
having a particular population and an initial allocation of missiles and a follow-on city having a
given probability of a follow-on attack and a number of reserve missiles that will be used to
protect the city from any follow-on attack. These facts are loaded into the declarative memory of
ACT-R upon being perceived. For example, the first city in scenario 1 is represented as follows:

Cityl 99.326
isa PERCEPT
city 1
pop 1839449
miss 0

The model begins by inspecting the cities in the scenario in a left-to-right fashion (based on the
solution method used by a human task expert), and calculating the number of lives that could be
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saved by increasing the allocation of missiles to the city. A run trace of the individual
productions that produce this behavior follows:

Time 0.000: Next-City Selected
Time 0.050: Next-City Fired
Time 0.050: Info-City Selected
Time 0.100: Info-City Fired
Time 0.100: Cityl Retrieved
Time 0.100: Store-City Selected
Time 0.150: Store-City Fired

These productions, "Next-City", "Info-City", and "Store City" are involved in perceiving the city
and transferring that perception to declarative memory, which is noted when Cityl is retrieved
and stored. Once the perception is complete, the next thing to do is to evaluate the impact of
adding a missile. The evaluation proceeds by first attempting to retrieve a previous example of a
similar evaluation (i.e., it is much easier to remember a calculation than to actually do the math,
so the cognitive model attempts to recall previously doing the calculation). In this case, since the
model has never encountered this problem (or any other) prior to this, it cannot retrieve the
solution to the evaluation, so instead it calculates it in a production named "Failure-Eval":

Time 0.150: Eval-Inc Selected
Time 0.200: Eval-Inc Fired
Time 1.200: Failure Retrieved
Time 1.200: Failure-Eval Selected
Time 1.250: Failure-Eval Fired
Time 1.250: Better-Eval Selected
Time 1.300: Better-Eval Fired

The evaluation proceeds by comparing the potential gain of adding a missile to this city with the
best possibility so far during the trial. Since this is the first city inspected it is selected as the
best so far ("Better-Eval"). The same process is used to evaluate the remaining cities and the
follow-on city. Based on these calculations, the first city presents the opportunity for the greatest
gain, so it is selected to receive a missile:

Time 7.650: Allocate Selected
Allocating GBI to City 1
Optimal move: Allocate GBI to City 1

Time 7.700: Allocate Fired

In addition, the trace notes the actual optimal move though the model is not provided with this
information as feedback at this point. Thus, the model has taken approximately 8 seconds to
perform an initial allocation (although modeling latency was not an intended goal of this project,
the latency values do, in fact, correspond reasonably well with actual behavior as a result of
simply leveraging the assumptions of a cognitive architecture). The model continues allocating
missiles as the trial continues, trying to decide when to leave the rest of the missiles in reserve
for a follow-on attack. In this trace, after working on the problem for 39 seconds, the model
allocates one missile more than it should have:
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Time 38.550: Allocate Selected
Allocating GBI to City 5
Optimal move: no allocation (keep reserve level)

Time 38.600: Allocate Fired

The model completes the trial, choosing not to allocate any more missiles, and then receives trial
feedback indicating the chosen and desired (optimal) allocation of missiles to the cities:

Time 45.150: No-More-Missiles Selected
Time 45.200: No-More-Missiles Fired
Time 45.200: No-Allocate Selected

Desired missiles for city 1 population 978332 missiles
allocated 2: 2
Desired missiles for city 2 population 344677 missiles
allocated 1: 1
Desired missiles for city 3 population 250900 missiles
allocated 0: 0
Desired missiles for city 4 population 1821557 missiles
allocated 2: 2
Desired missiles for city 5 population 1728296 missiles
allocated 3: 2
Desired missiles for follow-on city 6 population 2368000
probability 0.25 missiles left 0: 1

Time 45.250: No-Allocate Fired

In this problem, the model has allocated 3 missiles to city 5 while not leaving any missiles in
reserve to defend from a follow-on attack. The model processes the rows of the feedback one at
a time, inspecting each for the chosen and desired coverage for that population. The first city is
given the appropriate level of coverage and the model notes this:

Time 45.250: Next-Feedback Selected
Time 45.300: Next-Feedback Fired
Time 45.300: Feedback-City Selected
Time 45.350: Feedback-City Fired
Time 45.715: Feedback5 Retrieved
Time 45.715: Store-Feedback Selected
Time 45.765: Store-Feedback Fired
Time 45.765: Right-Allocation Selected
Time 45.815: Right-Allocation Fired

The more interesting case is that of the fifth city, where the model notes that an incorrect
allocation was made:

Time 47.139: Next-Feedback Selected
Time 47.189: Next-Feedback Fired
Time 47.189: Feedback-City Selected
Time 47.239: Feedback-City Fired
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Time 47.521: Feedback9 Retrieved
Time 47.521: Store-Feedback Selected
Time 47.571: Store-Feedback Fired
Time 47.571: Less-Allocation Selected
Time 47.621: Less-Allocation Fired

Correspondingly, the model also notes that more missiles should have been kept in reserve:

Time 47.621: Next-Feedback Selected
Time 47.671: Next-Feedback Fired
Time 47.671: Feedback-City Selected
Time 47.721: Feedback-City Fired
Time 47.983: Feedbackl0 Retrieved
Time 47.983: Store-Follow-On Selected
Time 48.033: Store-Follow-On Fired
Time 48.033: More-Reserve Selected
Time 48.083: More-Reserve Fired
Time 48.083: End-Feedback Selected
Time 48.133: End-Feedback Fired

The effect of the "Less-Allocation" and "More-Reserve" productions is to store an instance in
declarative memory that corresponds to the difference between the action that was actually taken
and the action that should have been taken (the optimal choice). This instance, a chunk of
information now stored in declarative memory, will have the opportunity to be retrieved the next
time the model attempts to evaluate the alternative allocations that can be made during a trial (as
was performed by the "Eval-Inc" production above). The assumption that is latent in this
process is that the learner is consciously choosing to attend to the feedback screen, and that the
same process would not necessarily be engaged by a more passive or less problem focused
viewing of the information. This assumption is borne out to some extent by the differences in
performance observed in the three feedback conditions - the summary screen detailing the
difference between actual performance and ideal performance appears to be a key driver of
successful learning in this task.

Relating Model Performance to Human Performance
The preceding section describes the qualitative aspects of the performance model - the actions
taken and their sequencing. This provides the first level of model performance description - it
demonstrates that the model performs the task and does so in a way that does not overtly violate
the constraints of human performance. (This step is, in fact, a prerequisite step in model
validation that is often skipped before commencing with a quantitative analysis of second-order
model effects. That is not to underrate the importance of finer-grained distinctions; it is simply
to point out that the finer details of model correspondence are irrelevant if the broader details are
wrong.)

Quantitative issues of interest include describing and explaining the proportion of time the model
stays on the optimal path, and the parameters that impact that performance, and issues
surrounding learning. We chose to investigate the use of two parameters in tuning model
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performance: the accuracy of feedback (an environmental parameter, not a parameter of the
model itself), and the accuracy of mathematical calculations. No other parameters were
manipulated in the course of model development - the parameters of the ACT-R architecture
were all set to either initial values or to a predetermined value prior to exploring the relationship
between human performance and model performance.

The first parameter, accuracy of feedback, is of interest for two reasons: 1) we determined that
the version of the task in existence prior to this project had a bug in it which had often resulted in
incorrect feedback in a prior study, and thus produced noisy feedback, and 2) expert feedback is
likely to be at least slightly sub-optimal, so slightly noisy optimal feedback can be used to
approximate the impact of expert feedback on training. To investigate these parameters, we
conducted a search across the parameter space of these variables with the intention of identifying
a portion of that space that corresponded to a range of human performance observed. Data
collection consisted of running a single model through a complete experimental session for each
of the parameter values. Table I below shows the percentage of moves made on the optimal path
while varying the feedback accuracy and noise in mental calculations:

Table 1. Proportion of optimal moves as a function of calculation noise and feedback noise.

Calculation Noise
Feed.
Noise 0.5 1 2 2.5 3 Mean

2 0.55 0.53 0.54 0.56 0.51 0.54
1 0.57 0.53 0.55 0.57 0.52 0.55

0.5 0.63 0.65 0.62 0.61 0.56 0.61
0 0.66 0.64 0.62 0.62 0.59 0.63

Mean 0.60 0.59 0.58 0.59 0.55

This space roughly corresponds to the range of human performance observed during the
empirical studies, with more moves falling on the optimal path at lower feedback and calculation
noise levels. The values are surprisingly consistent given that this is, in effect, a single subject
study. The graph in figure 11 below shows the same data as a surface, showing that these
parameters have roughly equal effects and combine in a linear fashion:
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Figure 11. Parameter space relating proportion of optimal moves to calculation noise and feedback accuracy.

Learning in the NMD Model
The NMD model described above is a learning model in the sense that it does accumulate
knowledge. As trials progress, the model depends more and more on recalling previous items
rather than calculating the proper choice of action. This transition from calculation to memory
retrieval, however, is not necessarily what many people think of when they identify learning.
The model is, in fact, performing a task it can already perform - it is just doing it better over
time. It might be labeled as "simply memorization", but in fact it does go beyond that.

The graph in figure 12 below shows the learning performance of an instance-based model of the
NMD task, plotting trial number against percentage above optimal performance. This graph uses
the same time scale and performance measure as the human performance data presented in figure
8. Like the human data, the model shows a somewhat bumpy but clearly increasing trend. The
simulation was completed on the same trials as the laboratory experiment and aggregated across
20 model runs, and thus represents nearly identical conditions for both the human solvers and the
cognitive models, allowing for straightforward comparison of the human performance and the
cognitive model performance.
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Figure 12. Learning effect produced by model in terms of proportion of optimal moves by trial.

There are two important points to be made with the graph above. The first is that learning within
the ACT-R framework, represented here as the transfer of operations from a procedural,
algorithmic form into a memory-based pattern matching process, captures the quantitative and
qualitative aspects of the learning demonstrated by the human participants. The second point is
that the learning demonstrated by the model is constrained by the representation chosen to learn
within. Both of these topics will now be addressed in greater detail

The learning that takes place during an experimental session involves, qualitatively, the transfer
of the seat of performance from a set of rules that algorithmically explain how to perform the
calculations necessary for the task to the declarative memory of ACT-R. This has the flavor of
what has been termed "Recognition Primed Decision Making", but rather than a vague notion of
expertise having to do with recognition, it is made explicit here: expertise is the accumulation of
task knowledge instances that allow the expert to make ever finer discriminations.

In this case, the ACT-R model is learning how many missiles go with a city of a particular size,
and that begs the question of what it should be learning. In truth, the answer to that question
depends on whether the goal is to model human performance, or whether there is an absolute
performance goal or criterion to reach. In any case, from the perspective of the optimal
algorithm the number of missiles depends completely on the relative needs of the other cities
presented in the scenario. A city of 100,000 people, for example, may receive two GBIs if the
remainder of the other cities in the scenario includes less than 50,000 people, but that same city
might receive no GBIs if the other threatened cities all had populations exceeding a million
people.
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Representational Choices
The model was developed with two free parameters: feedback accuracy and mental arithmetic
accuracy. We initially expected that learning effects exhibited by human task participants could
be captured, if somewhat unsatisfactorily, by a systematic variation of the mental arithmetic
accuracy parameter. However, the learning exhibited by the model based purely on memory
effects captures both the time scale and the qualitative shape of the learning demonstrated by
students in the laboratory.

The representation itself, though appearing impoverished, is actually sufficient for performing
the task at a high level of competence. The following chunk is an example of the actual content
of the learning:

Increment417 1.417
isa INCREMENT
pop 1738842
miss 2
eval 0

This particular fact is used by the model to decide that, if confronted with a city of population
1,738,842 that already has two missiles allocated, it is best to leave it at that (this is how the
model interprets the meaning of "eval 0" - the number represents an estimate of the number of
lives that would be saved by increasing the allocation, or 0 if it would be expected to cost more
lives than it saves). These incremental solution improvement chunks are created during the
feedback session, and though they are initially difficult to retrieve and sparse (there are many
situations there is no relevant memory for early on), they eventually come to cover the problem
space and provide support for good performance.

Optimal Feedback versus Expert Feedback
The simulation studies conducted examined learning with varying amounts of noise added to the
conclusions reached by automated tutor. That is, though the cognitive tutor is unaware it is
doing anything other than acting perfectly, it is in actuality being reduced in fidelity to compare
with higher fidelity representations.

The results from the simulation studies indicated that, while small differences in feedback quality
(like those expected between optimal and expert performance) have small impact, the impact on
performance tends to scale with the difference in quality between optimal and actual feedback.

That said, the simulation results also support the use of actual expert performance to drive the
development of a cognitive model. The initial actions taken by the current model, though based
on an optimal algorithm, contribute nothing to the eventual learning. The optimal rule-based
model simply provides a framework to get the model into the task, where the learning is actually
memory based and is produce by making mistakes, not by performing correctly. That is, the
mistakes are exactly what provides the opportunity for feedback. The difference between what
was done and what should have been done is what forms the basis for all of the learning
exhibited by the model.
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Instant Feedback versus Delayed Feedback
The role of instant feedback is interesting to consider from the perspective of model building.
For participants engaging in that condition, a mildly annoying ring tone would interrupt them
every time they made a move that was sub-optimal. This provides good motivation for staying
on task, since sloppy assignments tend to bring out the rings. However, the more interesting
question is, just what are participants learning at this time in the study? Blame assignment is
something that is typically considered within the very tight timeframes typically used in research
within the learning community.

General Discussion and Conclusions
The modeling effort suggests that the actual learning may have been improved memory
discriminations rather than any type of procedural or algorithmic improvement (and certainly
demonstrates that this kind of learning can account for the change in human performance over
time). However, deriving a mechanistic account for the impact of instant feedback on latency is
not nearly as obvious. The instant feedback may have served to simply keep the students on
course, thereby decreasing latency, but may not have had much differential impact on quality of
performance because what was being learned remained the same in both conditions. The instant
feedback appeared instead to improve the focus of the learning by reminding the student to stay
on course. That is, it produced more efficient training - an equivalent learning effect in
significantly less time. One interpretation of this is that the instant feedback kept students
exploring the part of the problem space that was relevant to improved performance, improving
efficiency by culling many potentially unproductive explorations that students might have
otherwise engaged in. The potential, if this interpretation is correct, is that instant feedback may
improve efficiency of training and allow more training to take place per unit time. While all
participants received the same training in the study reported here, the outcome might have been
different if the study were structured in a way to allow students to take advantage of training
efficiency.

Future Directions
Research on the high-order aspects of human information processing that contribute to skilled
human performance demands a quantitative description of the information processing that
specifies how people learn, recognize, assess, and make decisions about events occurring in
dynamic environments.

Modeling of human behavior in these dynamic environments has been pursued as a means of
studying the interactions of these various human capacities. However, much of the current
modeling efforts directed at representing human behavior have focused on laboratory tasks
which are typically time-constrained (e.g., discrete trials of a maximum length), and take place in
an extremely controlled environment with a relatively simple structure. This makes the
generalization of many of these models to larger scale domains suspect. In addition, the
interactions between many of the cognitive mechanisms studied in the laboratory are largely
unknown due to the divide and conquer approach typical of laboratory experimentation, where
the world is carved up into ever finer distinctions.
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The NMD task studied in Phase I of this research is typical of small-scale laboratory
experimentation. Although the task is a dynamic problem solving task, the interactions are
temporally constrained such that an individual problem solving episode spans no more than
several minutes. Further, the task demands clearly specify the goal of the problem solver. In
Phase II, we hope to extend this work to more dynamic, interactive environments in which the
behavior of trainees is less constrained and the possible goals and means of achieving them are
more numerous.

As an example domain characterized by complexity and dynamic interactions, consider the tasks
involved in guiding unmanned aerial vehicles (UAVs). A typical mission execution requires
dynamic planning and re-planning of routes, fine motor control, and close integration of motor,
perceptual, and cognitive elements within the various subtasks a pilot must perform.

Individual tasks performed by a pilot (e.g., reconnoitering a location during a reconnaissance
mission) are typically specified at the level of laboratory experiments (i.e., the complexity that
would be typical of a single trial during an experiment). However, the overall tasks performed
by pilots are better described as occurring at a higher level of aggregation, where the subtasks are
assembled according to little-studied constraints and processes.

This recognition - that we need a way to assemble behavior described at a low level into
aggregate behavior - has led us to search for a potential stand-in for the actual processes used by
human solvers that could produce very similar behavior with much less effort than, for example,
knowledge engineering. In our previous work (detailed below), we have characterized human
performance in terms of an optimal model given human constraints. In general, the approach has
demonstrated that an optimal model augmented with human constraints provides a reasonable
model of skilled human behavior. This suggests that this method could be applied to the
problem of sequencing cognition in general. That is, the assembly of individual tasks could be
achieved through the use of a planning system typical of the Artificial Intelligence and
Operations Research communities that is capable of sequencing the broader level of cognition
through an optimal or near-optimal approach to the problem (note that the Apex system
approaches sequencing the finer level of cognition in this way, but does not provide a robust
account of broader cognition). However, simply using an unconstrained optimal planner would
likely result in behavior that is not plausible. What is needed, instead, is a set of constraints on
human planning capabilities that can be used to constrain the planning system.

Fortunately, many researchers have realized that the interactions of individual cognitive
components are sometimes as important as the individual parts, and that those interactions will
be exposed by necessity in any complex, dynamic domain. Thus, there has been a recent
emphasis on complex, dynamic domains that necessitate the integration of many skills within a
single cognitive model to enable performance in that problem domain. This integration,
however, is laborious. To put the findings of specific experiments back together we require a
methodology for assembling these component cognitive models that can be accomplished with
less effort than the current state of the art. That is, what is needed is a methodology for
transitioning the high-fidelity models used in laboratory experiments to the dynamic
environments typical of real-world complex tasks.
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A candidate approach to bridging the divide between high-fidelity cognitive modeling and
performance in large-scale dynamic domains is the induction of small-scale cognitive models
from optimal or near-optimal algorithms and the use of an optimal or near-optimal planner in
selection of appropriate small-scale models during performance.10 In addition to inducing a
cognitive model from an optimal algorithm, alternatively, it is also possible to induce a cognitive
model from an optimal performance. This proposal focuses on developing these methods and
applying them to create robust models of human behavior for use in training and simulation
systems. The key problems in development of a large-scale cognitive model include:

0 successful induction of the goal structure so individual actions can be properly
interpreted,

* segmentation of a stream of continuous action into discrete cues and actions taken, and,
* integrating logical sequencing of actions at a broad scale (i.e., planning) with the finer

temporal scale of those individual actions.

As a whole, our future research plans comprise two distinct threads. The first thread will involve
classroom research on individual student choice intended to determine constraints on human
planning behavior that delineate its departure from optimality, integrating modeling using the
methodology developed in Phase I of this research. Part of the classroom work will help explain
why and where people diverge from optimal strategies. In particular, some of this classroom
research will explore the connections between individual difference variables and strategy
choices. These relationships and more general results on why/where people don't make optimal
choices will be used to inform work on the second thread by circumscribing the relation of
student behavior to optimal planning.

The second thread, which will be pursued simultaneously with the first, will involve a modeling
project that applies the Phase I methodology (i.e., lessons learned about the use of optimal
algorithms as the core of a training system) to existing expert performance data in a highly
complex, dynamic environment - UAV operation. This thread will focus on integrating an
optimal planner with a cognitive modeling environment (the environment that supports the
tutoring models used in Phase I). The knowledge obtained from the classroom study will be
leveraged to inform the further development of the planning system for sequencing cognitive
actions and used to develop a training system in the UAV domain. The UAV models will then
be cross validated using the methods from the classroom study and the data from expert
performance in the task domain.

Future Technical Objectives
The problem of leveraging an optimal model of performance to sequence cognition at a finer
grain size for use in both training (i.e., prescriptively) and in the development of simulation

'o The terms optimal, near-optimal, and normative are used throughout the fields of Cognitive Science with a wide
variety of definitions. For the purposes of this proposal, optimal means optimal with respect to the (external) task
constraints, near-optimal means optimal with respect to the (internal) algorithm processing constraints and
normative is used as a synonym for optimal. An expert model is a model derived from human performance, and can
be expected to be largely indistinguishable from a near-optimal model, which can be derived from an optimal
model. Thus expert and near-optimal models are expected to have indistinguishable performance, but different
derivation methods.
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models of human behavior (i.e., descriptively) can be approached by tackling the following
technical objectives.

1. Extend tutoring methodology explored in Phase I to dynamic, real-time
environments

The methodology for tutoring developed in Phase I used a cognitively constrained
optimal model-based approach to tutoring to suggest remediations. These remediations
may require different modalities in more complex, dynamic environments (e.g., audible
feedback for a visual task might be more effective).

2. Apply instance-based methods to micro-cognitive model development

We will refine a methodology for seeding instance models with both normatively correct
data (produced from an optimal model) and expert performance data based on the initial
results from Phase I. Seeding instance models through the observation of ideal behavior
has the potential to generalize to a large range of simulation environments, and could
potentially reduce the cost of cognitive models and expand their use within these
simulation environments in general.

3. Investigate the relationship between learned optimal behavior and actual use of that
behavior in real-world settings

Although students in real-world education-related choice situations can demonstrably
learn optimal choice strategies, they do not necessarily use those strategies when they
should. That is, although they learn the rules, they fail to apply them in the correct
context (discussed in further detail below). The purpose of this objective is to understand
the causes of this failure and develop potential remediations for the learning environment.

4. Investigate optimal planning approaches to specifying macro-cognitive behavior

Although human behavior is expected to be sub-optimal, an optimal planner can
potentially be used as the core of a system for simulating human behavior, especially for
sequencing cognition at a broad scale (i.e., sequencing the action of micro-cognitive
operations).

5. Explore methods for unifying instance-based micro-cognitive models with rule-
based, planning focused macro-cognitive models

The methods developed for producing micro-cognitive instance-based models and rule-
based planning focused macro-cognitive models exist at different temporal scales. Phase
I explored modeling and tutoring micro-cognitive actions; this objective would explore
ways of linking individual models created using the Phase I methodology. Integrating
these models requires a method for transferring constraints from the micro-cognitive
models to the macro-cognitive models for use in planning, and a method for the macro-
cognitive system to transfer control or sequence the action of micro-cognitive models for
use in execution.

6. Explore key attributes of instance recording, selection of features and attributes

The density at which human performance is recorded has a direct bearing on the
development of models for simulation and training. We will explore the benefits of
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extremely high density recording and the impact of that density on the segmentation of
training instances (i.e., determining what constitutes an instance in a largely continuous
data stream).

Extending instance-based modelin2 usine a 2lobal planner

Instance-based modeling techniques, which are inherently learning techniques, depend on a
collection of instances of behavior that the learning process can use to tune its behavior to a
closer and closer approximation of the source behavior. The source data for instance-based
modeling techniques can be either expert-level performance, or optimal model performance, or
self-performance with feedback relating the effectiveness of the actions taken. An emerging
paradigm within the ACT-R community appears to be the development of instance-based micro-
models of decisions that are then unified with a rule-based approach to higher-level cognition."I

This approach suggests the development of multi-level models of individual behavior where the
global level is capable of roughly directing the behavior of the individual, while the local level is
based on perceptual and motor constraints as they interact with learning and memory (see figure
13 below).

-i-
It

Figure 13. A Global Planner the Sequences Micro-models.

The global level of behavior is, conveniently for the modelers, often given as a task constraint.
That is, in typical experiments, the task is focused on a trial-by-trial format where the
experimenter directs the participant in the pursuit of a particular goal, so the goal and task
structure is known a-priori. This bottom-up approach to high-level cognition has resulted in a
paradigm where cognitive modeling environments and approaches often generate PERT charts of
their activity (e.g., GOMS, APEX, ACT-RIPM), but the sequencing of the activity is done

1 Gonzalez, C., Lerch, F. J., & Lebiere, C. (submitted). Instance-based learning in real-time dynamic decision

making. Submitted to Cognitive Science.
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without planning across possible outcomes. That is, all of the planning is incorporated into the
local decisions, rather than having a more global plan that constrains the sequencing of the micro
operations (at a deeper level, of course, the architectures themselves provide sequencing for
individual operations, but that is at a finer grain scale than being discussed here). The result is
that many cognitive models have very little representation of high-level planning that might be
used to sequence an overall solution to any abstract problem. A secondary outcome of this has
been an avoidance of domains characterized by long sequences of operations and sustained
operations. This also leads to the curious issue that, though these cognitive architectures use the
descriptive language of the planning domain to describe their actions, there is little attempt to
actually plan those actions using a plan representation as is done by planning systems (e.g., in
hierarchical planning, partial order planning (POP), the GraphPlan planning system, etc.), which
were originally developed based on the behavior of humans organizing complex behavior.

Cognitive models often fail to represent planning at a high level, and this failure is typical not
just of the models that simulate human behavior, but is also typically a missing aspect of the
architecture that supports the model. As a result, cognitive models are often not applied to
complex tasks such as sustained operations, since there is little theoretical basis the architectures
can bring to the extensive planning typical in these domains. What is needed to address this
weakness is the incorporation of more abstract models of problem solving that can be used to
guide global behavior. Although this is commonly done in areas such as computer science,
logistics and operations research (e.g., through planning and scheduling algorithms), the
cognitive science community has not widely adopted planning algorithms as a method of
sequencing high-fidelity, local behavior (exceptions include work such as Koedinger and
Anderson, 199012, where they demonstrated that a diagrammatic representation of problems
directly supported forward-chaining solution approaches).

An open research question is how to determine the global level of a system for a cognitive model
in a less well-structured task where the task structure is not known or given. One candidate
approach is the use of a planning system that is subject to simple cognitive constraints and is
designed to work with abstract graph search representations to guide the global behavior. This
requires knowledge, however, of the relationship between human behavior and optimal choices.
That is, we must know something of those constraints before we can use them. Thus, we will
now detail some of the necessary work to expose those constraints.

Exposin! human problem solving constraints

We expect this research to lead to a greater understanding of the relationship between optimal
algorithms and human behavior, especially in regards to strategy choice and planning. As a
prerequisite to detailing our approach to pursuing this research, we will first discuss some of the
relevant research already conducted on choice behavior and leverage that to motivate several of
the technical and research objectives that follow.

12 Koedinger, K. R., & Anderson, J. R. (1990). Abstract planning and perceptual chunks: Elements of expertise in
geometry. Cognitive Science, 14, 511-550.
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Since Newell and Simon's seminal work' 3 , problem solving has been studied as a process of
making choices. One theme in their work and subsequent work is that problem solvers tend to
make effective choices. For example, means-ends analysis and hill climbing are two problem-
solving heuristics that people naturally use that work well in many routine, everyday problem
situations. 14 In addition, when solvers have repeated opportunities to work problems in a given
domain, they learn to choose the strategies and problem-solving operators that lead to greatest
success. 1516 This suggests an adaptive choice process is at work. Indeed, the ACT-R cognitive
architecture posits a choice mechanism that usually selects the utility-maximizing problem-
solving operator, where operators' utilities have been learned through experience. More
specifically, at each step in problem solving, the ACT-R mechanism chooses according to a soft-
max rule17 by virtue of a noise parameter added into the process. The probability of choosing
production i is given by:

P(i) =/ e UY

Where Ui is the estimated utility of the production i and r is a noise parameter.

Lovett (1998) showed that in non-stationary environments (i.e., situations when operators might
change their probability of success) this noisy choice process leads to the best overall
performance of the model compared to several competitors including a perfect, "noise-free"
choice process.

In contrast to the adaptive behavior of participants in these laboratory experiments - generally
college students participating for pay or course credit - there is evidence that similar students,
when making choices among problem-solving and learning strategies in real classrooms, do not
make effective choices. Research on metacognitive strategies, for instance, indicates that
students do not apply effective study skills even after training in those skills.' 8 That is, when
trained in an optimal strategy, and after demonstrating competence in that strategy, students do
not actually engage in that strategy. Another line of research on how students use worked
examples as study aids shows that only a portion of the students think through why each step was
taken in the worked example, a strategy that greatly benefits them in subsequent problem
solving. 19 The remaining students use other, presumably less effective strategies for studying the
worked examples and then perform more poorly on subsequent problems.

"1 Newell & Simon. (1972). Human Problem Solving. Englewood Cliffs, NJ: Prentice-Hall.

14 Even though bill climbing can lead to impasses in problems with local minima, it is an extremely low-cost

heuristic that is still adequate to a wide variety of tasks.
15 Lovett, M. C., & Anderson, J. R. (1996). History of success and current context in problem solving: Combined
influences on operator selection. Cognitive Psychology, 31, 168-217.
16 Lovett, M. C. (1998). Choice. In J. R. Anderson & C. Lebiere (Eds.) Atomic Components of Thought. Mahwah,
NJ: Erlbaum.
"7 Luce, R. D. (1959). Individual Choice Behavior: A Theoretical Analysis. New York: Wiley.
18 Hattie, J., Biggs, J., & Purdie, N. (1996). Effects of learning skills interventions on student learning: A meta-
analysis. Review of Educational Research, 66, 99-136.
'9 Chi, M. T. H., Bassok, M., Lewis, M. Reimann, P., & Glaser, R. (1989) Self-explanations: How students study
and use examples in learning to solve problems. Cognitive Science, 13, 145-182.
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The natural question then is, why are students in real-world, education-related choice situations
not showing the same tendency to learn and use more effective strategies as they show they are
able to do in the laboratory? Why, when trained in a highly effective strategy, do they choose a
less effective strategy? Understanding the answer to these questions is essential to any field
application of techniques based on optimal choice algorithms.

This project has suggested exploring these questions by a combination of approaches:

I) Gathering a rich data stream from students taking a real course for a grade so that the
strategies they are choosing and the effectiveness of those strategies can be inferred from
the data. Strategy determination is often difficult with the sparser data collection - rich
data collection is a prerequisite for identifying the strategies used by students.

2) Building a set of computational models within the ACT-R system that include a variety
of possible strategies so that the effectiveness of these strategies can be evaluated in a
simulation context under the natural constraints of the human learning system.

3) Collecting a set of individual difference variables (e.g., working memory capacity, prior
knowledge, epistemological believes, speed-accuracy trade-offs) from the students taking
the course to explore the role of individual differences in students' strategy choices and
the effectiveness of different strategies.

4) Exploring the role of these individual difference variables in the computational models to
identify how the effectiveness of different strategies varies as a function of particular
individual difference variables.

Note that the preceding four steps act to describe and explain the degree to which students'
choices are effective and to identify ways in which their choices are not effective. This leads
naturally to a fifth step:

5) Developing and testing new interventions to diagnose and remediate situations where
students are not making the most effective learning choices.

Integrating human problem solving constraints into a planning system

Given that we have determined key constraints in planning, the next step is to integrate these
constraints with a planning system. Previously, we developed a planning system that
incorporated aspects of Means-Ends Analysis and which borrowed from the CHREST
architecture of Gobet (1997)20, which was created to explain the search behavior of chess
players. We have already demonstrated (Best, 2004)21 that it is possible to use the same abstract
graph planner used for solving the TSP to guide the global level of behavior for autonomous
robotic navigation within an interior space. In that case, however, lower level decision processes
(i.e., the perceptual and motor decisions) were not instance-based, but were instead rule-based,
which exposed issues of brittleness and intractability (from a knowledge-engineering

20 Gobet, F. (1997). A pattern-recognition theory of search in expert problem solving. Thinking and Reasoning, 3,

291-313.
"2! Best, B. J. (2004). Route Planning and Threat Avoidance through Cognitive Robotics. Presented at Winter

Simulation Conference.
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perspective). This, in turn suggests that the lower level decision processes might be more
properly modeled using an instance-based approach.

Following this approach, it should be possible to build a complete cognitive model of a complex
task simultaneously approaching it from the bottom-up and the top-down. To make this intuition
concrete, consider the task of controlling the Predator UAV. The Predator UAV Simulated Task
Environment, available from the PALM lab at Mesa AFRLz2 , provides a ready environment for
studying the interactions of a cognitive model with a complex task environment. In addition, the
PALM lab has collected data on expert human performance across a variety of basic maneuvers
involving the Predator (e.g., maintain altitude and speed, turn to a heading and decrease altitude
by a specified amount within 60 seconds, etc.), and referenced these against the optimal
performance in each of those maneuvers, measuring the root-mean-square differences between
the human performance and the optimal performance.

The data collected at the PALM lab are worth exploring in further detail. Data collection
involved sampling control settings every 200 milliseconds, which allows for a very fine level of
analysis. Given this level of analysis, it is possible to build instance-based micro-models of
control that focus on two issues: 1) determining the amount of motor input necessary to produce
a desired control setting (e.g., how much throttle motion is necessary to set achieve 3000 RPM?),
and 2) what control setting is necessary to achieve a desired change in the flight envelope (e.g.,
what airspeed will produce a descent rate of 2 feet per second?). The flight envelope, though
primarily determined by the control settings, is also significantly influenced by environmental
factors (e.g., wind) that add a component of uncertainty to the effect of any control settings.
Thus, a complete micro-model of behavior for a simple maneuver must incorporate visual
perceptual information (e.g., current display readout values) with motor outputs, and a feedback
loop that allows interaction between the two to account for uncertainty and variability in the
effects of the control settings. In addition, given the modeling paradigm discussed here, it will
be straightforward to model individual differences from a signal detection perspective, and to
investigate if individual performances across tasks can be captured using this methodology.

Given the data for the expert performance, we know it is possible (though not necessarily easy)
to construct an instance-based model of performance for each of the maneuvers. This has in fact
been done for many other tasks, some of which are quite complex - for example, by using expert
play in backgammon to guide the construction of an expert-level backgammon player through a
simple observation and learnig paradigm. In addition, the basic maneuvers provide mid-level
tasks that could be leveraged as building blocks to guide performance in a more complex task,
since each of these basic maneuvers is well-specified and time-constrained. That is, the more
complex maneuvers are likely composed of sequences of the basic maneuvers.

The main difficulty in inducing model structure at the global level in many domains is in
decomposing the task performance - knowing what goal the participant is currently pursuing -
so the overall goal structure can be induced. While protocol analysis, cognitive task analysis,
and other tools exist for attempting to answer this question, it is also possible that the sequencing
of instance-based micro-models of individual maneuvers by a planning system subject to
cognitive constraints may provide a compelling account of decision processes in complex

22 http://www.mesa.afmc.af.milihtml/palmlab.htm
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environments, and sidestep this difficult issue and many of the inherent limitations of knowledge
engineering. Given that the same planning system paradigm has successfully modeled chess
playing, human approaches to the TSP, and navigation in interior spaces, we think it is possible
that this paradigm could provide a framework for task performance in the UAV domain.

The general questions we are interested in pursuing are: 1) whether it is possible to use the
optimal models of individual maneuver performance that the expert performance is compared
with to guide the development of instance based micro-models of control for each of these tasks,
and 2) whether unification of these micro-models through a cognitively constrained planning
framework that orders the application of individual micro-models in the pursuit of an overall
goal provides a reasonable model of overall behavior. Specifically, we are interested in applying
this modeling technique to data collected for the Predator UAV simulated task environment, an
environment characterized by uncertainty and high workloads across sustained operations, and
which allows for the exploration of perceptual and motor constraints on decision processes in the
allocation of resources. To this end, the PALM lab and Micro Analysis & Design are pursuing a
CRDA to allow for the sharing of code, models, the Predator STE, and collected data.

Commercialization
The training community needs automated tutors that can be constructed within a reasonable time
and cost, and existing rule-based approaches to codify the knowledge of experts fall short of
achieving that goal.

The completed Phase I effort has produced an approach to cognitive modeling that extends
existing systems while avoiding many of the shortcomings of the knowledge engineering
approach to authoring those systems. Our approach will yield more realistic and more accurate
models of normative and expert performance while minimizing the investment that must be
made to produce and maintain those models.

While our primary focus in Phase II will be to develop a modeling framework and automated
tutor useful to the Air Force, the resulting software and methodology will have applications in
many domains. It is the ideal core for any automated training system intended to teach humans
to perform complex tasks and assess their performance in sustained operations. Examples
include flying an unmanned aerial vehicle, operating an emerging weapon system, and allocating
ground based interceptors in a missile defense environment.

In addition to providing the basis for a tutoring methodology, this work also has the potential for
providing a methodology for populating constructive simulations with intelligent agents both as
teammates and opponents. Although it is difficult to estimate, the need for non-player characters
in various military simulations is certainly enormous, and the potential contribution of this
methodology for simultaneously providing tutoring agents, teammates, and opponents cannot be
understated.

Beyond the training domain, this approach could be used in any application requiring accurate,
affordable human behavior representation. For example, it could be used to implement
autonomous robot navigation in an interior space. It could form the core of an intelligent
assistant in a decision support system designed to aid humans operating increasingly complex
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systems in a reduced manning environment. It could be used in human-computer interface
design. In fact, MA&D is already working on a tool that allows system developers to evaluate
and improve the design of a user interface by using an executing human behavior model to
exercise it.

Our methodology has developed the concept of augmenting a normative model with human
constraints to provide a representation of typical, rather than optimal, human performance on a
complex task. Using a normative model augmented with human constraints guarantees that the
resulting tutor is teaching something the trainee is capable of learning. Such a model could also
be used to represent a believable human entity within any domain a tutor was built for, since the
optimal performance model is at the core of the tutoring system. For example, a UAV pilot tutor
for a Computer Generated Force environrment would, by necessity, already be capable of flying
the missions it was developed to train the trainee for. As a result, this approach has the potential
for populating constructive simulations with believable entities at a low cost compared to
knowledge engineering approaches, but at much higher fidelity than other low cost approaches
(such as finite state machine behavior models).

During Phase II, we will seek input from a variety of simulation based training and human
behavior representation communities in order to make design and implementation decisions that
will enable the product to address a wide range of applications.

The private sector appeal is potentially even larger, but, accordingly, much harder to estimate.
The most obvious products to come from this effort would be more effective automated training
systems, constructed with much less time and money than is currently typical. The ability to
accurately model expert and normative performance could transform something like the
Microsoft Paper Clip from an annoying distraction into a truly useful assistant. This research
could also have an impact on the development of computer generated avatars and non-player
characters for the computer gaming industry.

The results of this research also hold the promise of addressing problems, such as has already
been demonstrated for the Traveling Salesperson Problem, which are intractable using traditional
computational methods, but which become quite tractable when the problem representation
exploits the kinds of aggregate behaviors used by humans in solving the problem.

Much of MA&D's revenue comes from consulting services, rather than commercial product
sales. We believe that we can generate significant revenue through consulting services related to
the proposed work, using our expertise to develop expert and normative models and package
them in the rule-based framework to create standalone training applications and human behavior
representations. As an example, based on the number and variety of companies that have
contacted us requesting consulting services to create believable CGF entities, we estimate that
we could increase our consulting business by 10% in the first year by aggressively marketing this
technology and our capabilities in applying it.

MA&D has successfully marketed and sold quality simulation products to commercial customers
for over 20 years. A key part of our success is our commitment to continual product
improvements, most of which are driven by customer demand, and to providing customer
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support that is exemplary in the marketplace. MA&D also has an excellent track record
generating significant revenue from customization, application, and follow-on projects resulting
from SBIR efforts. Based on this experience, we believe that we have a realistic grasp on the
potential market and our ability to find or generate the funding necessary to productize, promote,
and sell the technology proposed here.

41



Optimal Training Systems STTR Phase I Final Report Micro Analysis & Design, Inc.

Appendices

Appendix 1: Optimal Model
(defvar GBI-count 10)
(defparameter *GBI-hit-rate* 0.30)
(defparameter *follow-on-probability* 0.25)

(defstruct target-city
(name)
(population 0)
(GBIs 0)
(pct-saved 0)
(pop-saved 0)

(defun create-scenario (pop-a pop-b pop-c pop-d pop-e pop-follow-on)
(setq city-i (make-target-city :name 'city-a :population pop-a))
(setq city-2 (make-target-city :name 'city-b :population pop-b))
(setq city-3 (make-target-city :name 'city-c :population pop-c))
(setq city-4 (make-target-city :name 'city-d :population pop-d))
(setq city-5 (make-target-city :name 'city-e :population pop-e))
(setq city-6 (make-target-city :name 'follow-on-city :population pop-

follow-on)))

(defun calc-pct-saved (num-GBIs)
(let ((factor (expt 0.3 num-GBIs)))

(- 1 factor)))

(defun calc-pop-saved (population num-GBIs)
(let ((pct-saved (calc-pct-saved num-GBIs)))

(* population pct-saved)))

(defun calc-follow-on-pop-saved (population num-GBIs)
(let ((attack-pct-saved (* *follow-on-probability* (calc-pct-saved num-

GBIs)))
(no-attack-pct-saved (- 1 *follow-on-probability*)))

(+ * population attack-pct-saved)
• population no-attack-pct-saved))))

(defun calc-gain (population num-GBIs)
(let* ((current-num-saved (calc-pop-saved population num-GBIs))

(projected-num-saved (calc-pop-saved population (+ num-GBIs 1)))
(follow-on-current-num-saved (calc-follow-on-pop-saved (target-city-

population city-6) (target-city-GBIs city-6)))
(follow-on-projected-num-saved (calc-follow-on-pop-saved (target-

city-population city-6) (- (target-city-GBIs city-6) 1))))
(+ (- projected-num-saved current-num-saved) (- follow-on-projected-num-

saved follow-on-current-num-saved))))

(defun GBI-decision (city gain-i gain-2 gain-3 gain-4 gain-5)
(setf (target-city-GBIs city) (+ (target-city-GBIs city) 1))
(setf (target-city-GBIs city-6) (- (target-city-GBIs city-6) 1))
(format t "-%Allocating GBI to -s with following gains: -s -s -s -s ~Is"

(target-city-name city) gain-i gain-2 gain-3 gain-4 gain-5)

42



Optimal Training Systems STTR Phase I Final Report Micro Analysis & Design, Inc.

(defun no-GBI-decision (gain-i gain-2 gain-3 gain-4 gain-5)
(format t "-%Keeping current allocation of GBIs with following gains: -s -s

-s -s -s" gain-i gain-2 gain-3 gain-4 gain-5)

(defun allocate-GBI ()
(let ((gain-i (calc-gain (target-city-population city-i) (target-city-GBIs

city-i)))
(gain-2 (calc-gain (target-city-population city-2) (target-city-GBIs

city-2)))
(gain-3 (calc-gain (target-city-population city-3) (target-city-GBIs

city-3)))
(gain-4 (calc-gain (target-city-population city-4) (target-city-GBIs

city-4)))
(gain-5 (calc-gain (target-city-population city-5) (target-city-GBIs

city-5))))
(cond ((>= gain-I (max gain-i gain-2 gain-3 gain-4 gain-5 0))

(GBI-decision city-i gain-I gain-2 gain-3 gain-4 gain-5))
((>= gain-2 (max gain-I gain-2 gain-3 gain-4 gain-5 0))
(GBI-decision city-2 gain-I gain-2 gain-3 gain-4 gain-5))

((>= gain-3 (max gain-I gain-2 gain-3 gain-4 gain-5 0))
(GBI-decision city-3 gain-I gain-2 gain-3 gain-4 gain-5))

((>= gain-4 (max gain-i gain-2 gain-3 gain-4 gain-5 0))
(GBI-decision city-4 gain-i gain-2 gain-3 gain-4 gain-5))

((>= gain-5 (max gain-i gain-2 gain-3 gain-4 gain-5 0))
(GBI-decision city-5 gain-i gain-2 gain-3 gain-4 gain-5))

(t (no-GBI-decision gain-i gain-2 gain-3 gain-4 gain-5)))))

(defun display-city (target)
(format t "-%Name -s Population -s GBIs -s Expected Saved -s"

(target-city-name target)
(target-city-population target)
(target-city-GBIs target)
(calc-pop-saved (target-city-population target) (target-city-GBIs

target))))

(defun find-optimal ()
(setf (target-city-GBIs city-6) GBI-count)
(dotimes (i GBI-count)

(allocate-GBI)
(format t "-%Result of allocation:")
(display-city city-i)
(display-city city-2)
(display-city city-3)
(display-city city-4)
(display-city city-5)
(display-city city-6)

(format t "-%Total saved: -s" (+ (calc-pop-saved (target-city-population
city-i) (target-city-GBIs city-i))

(calc-pop-saved (target-city-population
city-2) (target-city-GBIs city-2))

(calc-pop-saved (target-city-population
city-3) (target-city-GBIs city-3))

43



Optimal Training Systems STTR Phase I Final Report Micro Analysis & Design, Inc.

(calc-pop-saved (target-city-population
city-4) (target-city-GBIs city-4))

(calc-pop-saved (target-city-population
city-5) (target-city-GBIs city-5))

(calc-follow-on-pop-saved (target-city-
population city-6) (target-city-GBIs city-6))))

(create-scenario 1839449 979044 1739986 978512 267409 1260533)

(find-optimal)
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Appendix 2: Expert (Cognitive) Model
;; expert NMD model

;; note - uses 'metropolis' instead of 'city' so it can co-exist with optimal
model

in the same name space

;;; from optimal model...

(defvar GBI-count 10)
(defparameter *GBI-hit-rate* 0.30)
(defparameter *follow-on-probability* 0.25)

(defun calc-pct-saved (num-GBIs)
(let ((factor (expt 0.3 num-GBIs)))

(- 1 factor)))

(defun calc-pop-saved (population num-GBIs)
(let ((pct-saved (calc-pct-saved num-GBIs)))

(* population pct-saved)))

(defun calc-follow-on-pop-saved (population num-GBIs)
(let ((attack-pct-saved (* *follow-on-probability* (calc-pct-saved num-

GBIs)))
(no-attack-pct-saved (- 1 *follow-on-probability*)))

(+ * population attack-pct-saved)
• population no-attack-pct-saved))))

(defun calc-initial-saved ()
(let* ((follow-on-pop (get-slot-value (get-safe-wme 'scenario-l) 'follow-

on-metropolis))
(reserve-GBIs (get-slot-value (get-safe-wme 'allocations-l) 'follow-

on-metropolis))
(follow-on-current-num-saved (calc-follow-on-pop-saved follow-on-pop

reserve-GBIs)))
follow-on-current-num-saved

(defun calc-expected-saved (metropolis-name)
(let* ((metropolis (get-safe-wme metropolis-name))

(metropolis-pop (get-slot-value (get-safe-wme 'scenario-!) (get-wme-
name metropolis)))

(follow-on-pop (get-slot-value (get-safe-wme 'scenario-1) 'follow-
on-metropolis))

(current-GBIs (get-slot-value (get-safe-wme 'allocations-l) (get-
wme-name metropolis)))

(reserve-GBIs (get-slot-value (get-safe-wme 'allocations-l) 'follow-
on-metropolis))

(current-num-saved (calc-pop-saved metropolis-pop current-GBIs))
(projected-num-saved (calc-pop-saved metropolis-pop (+ current-GBIs

i)))
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(follow-on-current-num-saved (calc-follow-on-pop-saved follow-on-pop
reserve-GBIs))

(follow-on-projected-num-saved (calc-follow-on-pop-saved follow-on-
pop (- reserve-GBIs 1))))

;;(format t "-%metropolis pop: -s" metropolis-pop)
;;(format t "-%Current GBIs: -s" current-GBIs)
(+ (- projected-num-saved current-num-saved)

(- follow-on-projected-num-saved follow-on-current-num-saved))

(defun Allocate-GBI (metropolis-name)
(let* ((allocations-wme (get-safe-wme 'allocations-l))

(current-GBIs (get-slot-value allocations-wme metropolis-name))
(reserve-GBIs (get-slot-value allocations-wme 'follow-on-

metropolis))
(target-slot (get-slot metropolis-name (wme-type-slots (wme-type

allocations-wme))))
(reserve-slot (get-slot 'follow-on-metropolis (wme-type-slots (wme-

type allocations-wme))))

(set-slot-value allocations-wme (slot-index target-slot) (+ current-GBIs
1))

(set-slot-value allocations-wme (slot-index reserve-slot) (- reserve-GBIs
1)

;; load act-r
(clear-all)
(sgp :er t)

(chunk-type populations metropolis-i metropolis-2 metropolis-3 metropolis-4
metropolis-5 follow-on-metropolis)
(chunk-type allocations metropolis-i metropolis-2 metropolis-3 metropolis-4
metropolis-5 follow-on-metropolis)
(chunk-type gains expected-saved-i expected-saved-2 expected-saved-3
expected-saved-4 expected-saved-5)
(chunk-type decision best-gain best-metropolis comparison pop-saved
comparison-gained-saved)
(chunk-type calculate-gain current-saved future-saved population GBIs gained-
saved)

(add-dm
(scenario-i isa populations

metropolis-I 1839449
metropolis-2 979044
metropolis-3 1739986
metropolis-4 978512
metropolis-5 267409
follow-on-metropolis 1260533)

(allocations-I isa allocations
metropolis-i 0
metropolis-2 0
metropolis-3 0
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metropolis-4 0
metropolis-5 0
follow-on-metropolis 10)

(gains-i isa gains)
(decision-i isa decision)
(test-calc-gain isa calculate-gain population 1000000 GBIs 1)

(goal-focus decision-i)

;; start the comparison process

(p start-problem
=goal>
isa decision
pop-saved nil
!eval! (null *retrieval*)

!bind! =initial-pop-saved (calc-initial-saved)
+retrieval>
isa gains
=goal>
pop-saved =initial-pop-saved

(p retrieve-gains
=goal>
isa decision
- pop-saved nil
!eval! (null *retrieval*)

+retrieval>
isa gains

;; do comparison for metropolis 1

(p calculate-metropolis-l-gains
=goal>
isa decision
comparison nil
=retrieval>
isa gains
expected-saved-i nil

!bind! =expected-saved (calc-expected-saved 'metropolis-i)
=retrieval>
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expected-saved-i =expected-saved
=goal>
comparison 1)

compare metropolis-i
(p metropolis-l-is-best

=goal>
isa decision
comparison 1
best-gain =best-gain
=retrieval>
isa gains
expected-saved-i =esl
>= expected-saved-i =best-gain

=goal>
best-gain =esl
best-metropolis metropolis-i
comparison nil

compare metropolis-i to best previous gain
(p metropolis-l-is-not-best

=goal>
isa decision
comparison 1
best-gain =best-gain
=retrieval>
isa gains
expected-saved-i =esl
< expected-saved-I =best-gain

=goal>
comparison nil

metropolis-i is first in this decision cycle, so best by default
(p metropolis-l-is-better-than-nothing

=goal>
isa decision
comparison 1
best-gain nil
=retrieval>
isa gains
expected-saved-i =esl

=goal>
best-gain =esl
best-metropolis metropolis-i
comparison nil
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;do comparison for metropolis 2

(p calculate-metropolis-2-gains
=goal>
isa decision
comparison nil
=retrieval>
isa gains
expected-saved-2 nil

!bind! =expected-saved (calc-expected-saved 'metropolis-2)
=retrieval>
expected-saved-2 =expected-saved
=goal>
comparison 2)

compare metropolis-2 to best previous gain
(p metropolis-2-is-best

=goal>
isa decision
comparison 2
best-gain =best-gain
=retrieval>
isa gains
expected-saved-2 =es2
>= expected-saved-2 =best-gain

=goal>
best-gain =es2
best-metropolis metropolis-2
comparison nil

compare metropolis-2 to best previous gain
(p metropolis-2-is-not-best

=goal>
isa decision
comparison 2
best-gain =best-gain
=retrieval>
isa gains
expected-saved-2 =es2
< expected-saved-2 =best-gain

=goal>
comparison nil

metropolis-2 is first in this decision cycle, so best by default
(p metropolis-2-is-better-than-nothing
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=goal>
isa decision
comparison 2
best-gain nil
=retrieval>
isa gains
expected-saved-2 =es2

=goal>
best-gain =es2
best-metropolis metropolis-2
comparison nil

do comparison for metropolis 3

(p calculate-metropolis-3-gains
=goal>
isa decision
comparison nil
=retrieval>
isa gains
expected-saved-3 nil

!bind! =expected-saved (calc-expected-saved 'metropolis-3)
=retrieval>
expected-saved-3 =expected-saved
=goal>
comparison 3)

compare metropolis-3 to best previous gain
(p metropolis-3-is-best

=goal>
isa decision
comparison 3
best-gain =best-gain
=retrieval>
isa gains
expected-saved-3 =es3
>= expected-saved-3 =best-gain

=goal>
best-gain =es3
best-metropolis metropolis-3
comparison nil)

compare metropolis-3 to best previous gain
(p metropolis-3-is-not-best

=goal>
isa decision
comparison 3
best-gain =best-gain
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=retrieval>
isa gains
expected-saved-3 =es3
< expected-saved-3 =best-gain

=goal>
comparison nil)

metropolis-3 is first in this decision cycle, so best by default
(p metropolis-3-is-better-than-nothing

=goal>
isa decision
comparison 3
best-gain nil
=retrieval>
isa gains
expected-saved-3 =es3

=goal>
best-gain =es3
best-metropolis metropolis-3
comparison nil

do comparison for metropolis 4

(p calculate-metropolis-4-gains
=goal>
isa decision
comparison nil
=retrieval>
isa gains
expected-saved-4 nil

!bind! =expected-saved (calc-expected-saved 'metropolis-4)
=retrieval>
expected-saved-4 =expected-saved
=goal>
comparison 4)

compare metropolis-4 to best previous gain
(p metropolis-4-is-best

=goal>
isa decision
comparison 4
best-gain =best-gain
=retrieval>
isa gains
expected-saved-4 =es4
>= expected-saved-4 =best-gain

=goal>
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best-gain =es4
best-metropolis metropolis-4
comparison nil)

compare metropolis-4 to best previous gain
(p metropolis-4-is-not-best

=goal>
isa decision
comparison 4
best-gain =best-gain
=retrieval>
isa gains
expected-saved-4 =es4
< expected-saved-4 =best-gain

=goal>
comparison nil)

metropolis-4 is first in this decision cycle, so best by default
(p metropolis-4-is-better-than-nothing

=goal>
isa decision
comparison 4
best-gain nil
=retrieval>
isa gains
expected-saved-4 =es4

=goal>
best-gain =es4
best-metropolis metropolis-4
comparison nil

do comparison for metropolis 5

(p calculate-metropolis-5-gains
=goal>
isa decision
comparison nil
=retrieval>
isa gains
expected-saved-5 nil

!bind! =expected-saved (calc-expected-saved 'metropolis-5)
=retrieval>
expected-saved-5 =expected-saved
=goal>
comparison 5)

compare metropolis-5 to best previous gain
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(p metropolis-5-is-best
=goal>
isa decision
comparison 5
best-gain =best-gain
=retrieval>
isa gains
expected-saved-5 =es5
>= expected-saved-5 =best-gain

=goal>
best-gain =es5
best-metropolis metropolis-5
comparison nil)

compare metropolis-5 to best previous gain
(p metropolis-5-is-not-best

=goal>
isa decision
comparison 5
best-gain =best-gain
=retrieval>
isa gains
expected-saved-5 =es5
< expected-saved-5 =best-gain

=goal>
comparison nil)

metropolis-5 is first in this decision cycle, so best by default
(p metropolis-5-is-better-than-nothing

=goal>
isa decision
comparison 5
best-gain nil
=retrieval>

isa gains
expected-saved-5 =es5

=goal>
best-gain =es5
best-metropolis metropolis-5
comparison nil

(p allocate-GBI
=goal>
isa decision
comparison nil
best-metropolis =best-metropolis
best-gain =best-gain
>= best-gain 0
pop-saved =pop-saved
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=retrieval>
isa gains
- expected-saved-i nil
- expected-saved-2 nil
- expected-saved-3 nil
- expected-saved-4 nil
- expected-saved-5 nil

!output! "-%Choosing metropolis -s for GBI allocation-%" =best-metropolis
!eval! (Allocate-GBI =best-metropolis)
!output! "-%Population saved: -s" =best-gain
!bind! =new-pop-saved (+ =best-gain =pop-saved)
=retrieval>
expected-saved-I nil
expected-saved-2 nil
expected-saved-3 nil
expected-saved-4 nil
expected-saved-5 nil
=goal>
comparison nil
best-gain nil
best-metropolis nil
pop-saved =new-pop-saved
-retrieval>

(p No-GBI-allocation
=goal>
isa decision
comparison nil
best-metropolis =best-metropolis
< best-gain 0
=retrieval>
isa gains
expected-saved-i =esl
expected-saved-2 =es2
expected-saved-3 =es3
expected-saved-4 =es4
expected-saved-5 =es5

!output! "-%No metropolis selected for GBI allocation (keeping
reserves)-%"

=retrieval>
expected-saved-i nil
expected-saved-2 nil
expected-saved-3 nil
expected-saved-4 nil
expected-saved-5 nil
=goal>
comparison nil
best-gain nil
best-metropolis nil
+retrieval>
isa allocations)

(p State-Decision
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=goal>
isa decision
comparison nil
pop-saved =pop-saved
=retrieval>
isa allocations
metropolis-i =met-i
metropolis-2 =met-2
metropolis-3 =met-3
metropolis-4 =met-4
metropolis-5 =met-5
follow-on-metropolis =fom

!output! "-%Final allocations: City-i -s, City-2 -s City-3 -s, City-4 -s,
City-5 -s, Follow-on City -s" =met-i =met-2 =met-3 =met-4 =met-5 =fom

!output! "Population saved: -s-%" =pop-saved
=goal>
comparison nil
-goal>

55



Optimal Training Systems STTR Phase I Final Report Micro Analysis & Design, Inc.

Appendix 3: Model Trace
dribbling to file "output.txt"

Loading Table C:\Documents and Settings\bbest\My Documents\Current
Projects\Optimal Training Systems\Simulations\Perceptual Noise Op5 Expert
Feedback 0p5\scenarios.txt
Cityl 99.326

isa PERCEPT
city 1
pop 1839449
miss 0
area t

Modifying chunk CITY1 with pop 978332, and GBIs 0
City2 100.124

isa PERCEPT
city 2
pop 979044
miss 0
area t

Modifying chunk CITY2 with pop 344677, and GBIs 0
City3 99.543

isa PERCEPT
city 3
pop 1239986
miss 0
area t

Modifying chunk CITY3 with pop 250900, and GBIs 0
City4 99.996

isa PERCEPT
city 4
pop 78512
miss 0
area t

Modifying chunk CITY4 with pop 1821557, and GBIs 2
City5 99.955

isa PERCEPT
city 5
pop 46409
miss 0
area t

Modifying chunk CITY5 with pop 1728296, and GBIs 1
Follow-On-City 99.301

isa FOLLOW-ON
prob 0.75
pop 1260533
miss 10

Modifying chunk FOLLOW-ON-CITY with pop 2368000, and GBIs 5
Time 0.000: Next-City Selected
Time 0.050: Next-City Fired
Time 0.050: Info-City Selected
Time 0.100: Info-City Fired
Time 0.100: Cityl Retrieved
Time 0.100: Store-City Selected
Time 0.150: Store-City Fired
Time 0.150: Eval-Inc Selected
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Time 0.200: Eval-Inc Fired
Time 1.200: Failure Retrieved
Time 1.200: Failure-Eval Selected
Time 1.250: Failure-Eval Fired
Time 1.250: Better-Eval Selected
Time 1.300: Better-Eval Fired
Time 1.300: Next-City Selected
Time 1.350: Next-City Fired
Time 1.350: Info-City Selected
Time 1.400: Info-City Fired
Time 1.400: City2 Retrieved
Time 1.400: Store-City Selected
Time 1.450: Store-City Fired
Time 1.450: Eval-Inc Selected
Time 1.500: Eval-Inc Fired
Time 2.500: Failure Retrieved
Time 2.500: Failure-Eval Selected
Time 2.550: Failure-Eval Fired
Time 2.550: Worse-Eval Selected
Time 2.600: Worse-Eval Fired
Time 2.600: Next-City Selected
Time 2.650: Next-City Fired
Time 2.650: Info-City Selected
Time 2.700: Info-City Fired
Time 2.700: City3 Retrieved
Time 2.700: Store-City Selected
Time 2.750: Store-City Fired
Time 2.750: Eval-Inc Selected
Time 2.800: Eval-Inc Fired
Time 3.800: Failure Retrieved
Time 3.800: Failure-Eval Selected
Time 3.850: Failure-Eval Fired
Time 3.850: Worse-Eval Selected
Time 3.900: Worse-Eval Fired
Time 3.900: Next-City Selected
Time 3.950: Next-City Fired
Time 3.950: Info-City Selected
Time 4.000: Info-City Fired
Time 4.000: City4 Retrieved
Time 4.000: Store-City Selected
Time 4.050: Store-City Fired
Time 4.050: Eval-Inc Selected
Time 4.100: Eval-Inc Fired
Time 5.100: Failure Retrieved
Time 5.100: Failure-Eval Selected
Time 5.150: Failure-Eval Fired
Time 5.150: Worse-Eval Selected
Time 5.200: Worse-Eval Fired
Time 5.200: Next-City Selected
Time 5.250: Next-City Fired
Time 5.250: Info-City Selected
Time 5.300: Info-City Fired
Time 5.300: City5 Retrieved
Time 5.300: Store-City Selected
Time 5.350: Store-City Fired
Time 5.350: Eval-Inc Selected
Time 5.400: Eval-Inc Fired
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Time 6.400: Failure Retrieved
Time 6.400: Failure-Eval Selected
Time 6.450: Failure-Eval Fired
Time 6.450: Worse-Eval Selected
Time 6.500: Worse-Eval Fired
Time 6.500: Follow-On-City Selected
Time 6.550: Follow-On-City Fired
Time 6.550: Follow-On-City Retrieved
Time 6.550: Eval-Follow-On Selected
Time 6.600: Eval-Follow-On Fired
Time 7.600: Failure Retrieved
Time 7.600: Compute-Follow-On Selected
Time 7.650: Compute-Follow-On Fired
Time 7.650: Allocate Selected

Allocating GBI to City 1
Optimal move: Allocate GBI to City 1

Time 7.700: Allocate Fired
Time 7.700: Next-City Selected
Time 7.750: Next-City Fired
Time 7.750: Info-City Selected
Time 7.800: Info-City Fired
Time 7.800: Cityl Retrieved
Time 7.800: Store-City Selected
Time 7.850: Store-City Fired
Time 7.850: Eval-Inc Selected
Time 7.900: Eval-Inc Fired
Time 8.900: Failure Retrieved
Time 8.900: Failure-Eval Selected
Time 8.950: Failure-Eval Fired
Time 8.950: Better-Eval Selected
Time 9.000: Better-Eval Fired
Time 9.000: Next-City Selected
Time 9.050: Next-City Fired
Time 9.050: Info-City Selected
Time 9.100: Info-City Fired
Time 9.100: City2 Retrieved
Time 9.100: Store-City Selected
Time 9.150: Store-City Fired
Time 9.150: Eval-Inc Selected
Time 9.200: Eval-Inc Fired
Time 10.200: Failure Retrieved
Time 10.200: Failure-Eval Selected
Time 10.250: Failure-Eval Fired
Time 10.250: Better-Eval Selected
Time 10.300: Better-Eval Fired
Time 10.300: Next-City Selected
Time 10.350: Next-City Fired
Time 10.350: Info-City Selected
Time 10.400: Info-City Fired
Time 10.400: City4 Retrieved
Time 10.400: Wrong-City Selected
Time 10.450: Wrong-City Fired
Time 10.450: City3 Retrieved
Time 10.450: Store-City Selected
Time 10.500: Store-City Fired
Time 10.500: Eval-Inc Selected
Time 10.550: Eval-Inc Fired
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Time 11.550: Failure Retrieved
Time 11.550: Failure-Eval Selected
Time 11.600: Failure-Eval Fired
Time 11.600: Worse-Eval Selected
Time 11.650: Worse-Eval Fired
Time 11.650: Next-City Selected
Time 11.700: Next-City Fired
Time 11.700: Info-City Selected
Time 11.750: Info-City Fired
Time 11.750: City4 Retrieved
Time 11.750: Store-City Selected
Time 11.800: Store-City Fired
Time 11.800: Eval-Inc Selected
Time 11.850: Eval-Inc Fired
Time 12.850: Failure Retrieved
Time 12.850: Failure-Eval Selected
Time 12.900: Failure-Eval Fired
Time 12.900: Worse-Eval Selected
Time 12.950: Worse-Eval Fired
Time 12.950: Next-City Selected
Time 13.000: Next-City Fired
Time 13.000: Info-City Selected
Time 13.050: Info-City Fired
Time 13.050: City5 Retrieved
Time 13.050: Store-City Selected
Time 13.100: Store-City Fired
Time 13.100: Eval-Inc Selected
Time 13.150: Eval-Inc Fired
Time 14.150: Failure Retrieved
Time 14.150: Failure-Eval Selected
Time 14.200: Failure-Eval Fired
Time 14.200: Worse-Eval Selected
Time 14.250: Worse-Eval Fired
Time 14.250: Follow-On-City Selected
Time 14.300: Follow-On-City Fired
Time 14.300: Follow-On-City Retrieved
Time 14.300: Eval-Follow-On Selected
Time 14.350: Eval-Follow-On Fired
Time 15.350: Failure Retrieved
Time 15.350: Compute-Follow-On Selected
Time 15.400: Compute-Follow-On Fired
Time 15.400: Allocate Selected

Allocating GBI to City 2
Optimal move: Allocate GBI to City 5

Time 15.450: Allocate Fired
Time 15.450: Next-City Selected
Time 15.500: Next-City Fired
Time 15.500: Info-City Selected
Time 15.550: Info-City Fired
Time 15.550: Cityl Retrieved
Time 15.550: Store-City Selected
Time 15.600: Store-City Fired
Time 15.600: Eval-Inc Selected
Time 15.650: Eval-Inc Fired
Time 16.650: Failure Retrieved
Time 16.650: Failure-Eval Selected
Time 16.700: Failure-Eval Fired
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Time 16.700: Better-Eval Selected
Time 16.750: Better-Eval Fired
Time 16.750: Next-City Selected
Time 16.800: Next-City Fired
Time 16.800: Info-City Selected
Time 16.850: Info-City Fired
Time 16.850: City2 Retrieved
Time 16.850: Store-City Selected
Time 16.900: Store-City Fired
Time 16.900: Eval-Inc Selected
Time 16.950: Eval-Inc Fired
Time 17.950: Failure Retrieved
Time 17.950: Failure-Eval Selected
Time 18.000: Failure-Eval Fired
Time 18.000: Worse-Eval Selected
Time 18.050: Worse-Eval Fired
Time 18.050: Next-City Selected
Time 18.100: Next-City Fired
Time 18.100: Info-City Selected
Time 18.150: Info-City Fired
Time 18.150: City3 Retrieved
Time 18.150: Store-City Selected
Time 18.200: Store-City Fired
Time 18.200: Eval-Inc Selected
Time 18.250: Eval-Inc Fired
Time 19.250: Failure Retrieved
Time 19.250: Failure-Eval Selected
Time 19.300: Failure-Eval Fired
Time 19.300: Better-Eval Selected
Time 19.350: Better-Eval Fired
Time 19.350: Next-City Selected
Time 19.400: Next-City Fired
Time 19.400: Info-City Selected
Time 19.450: Info-City Fired
Time 19.450: City4 Retrieved
Time 19.450: Store-City Selected
Time 19.500: Store-City Fired
Time 19.500: Eval-Inc Selected
Time 19.550: Eval-Inc Fired
Time 20.550: Failure Retrieved
Time 20.550: Failure-Eval Selected
Time 20.600: Failure-Eval Fired
Time 20.600: Worse-Eval Selected
Time 20.650: Worse-Eval Fired
Time 20.650: Next-City Selected
Time 20.700: Next-City Fired
Time 20.700: Info-City Selected
Time 20.750: Info-City Fired
Time 20.750: City5 Retrieved
Time 20.750: Store-City Selected
Time 20.800: Store-City Fired
Time 20.800: Eval-Inc Selected
Time 20.850: Eval-Inc Fired
Time 21.850: Failure Retrieved
Time 21.850: Failure-Eval Selected
Time 21.900: Failure-Eval Fired
Time 21.900: Better-Eval Selected
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Time 21.950: Better-Eval Fired
Time 21.950: Follow-On-City Selected
Time 22.000: Follow-On-City Fired
Time 22.000: Follow-On-City Retrieved
Time 22.000: Eval-Follow-On Selected
Time 22.050: Eval-Follow-On Fired
Time 23.050: Failure Retrieved
Time 23.050: Compute-Follow-On Selected
Time 23.100: Compute-Follow-On Fired
Time 23.100: Allocate Selected

Allocating GBI to City 5
Optimal move: Allocate GBI to City 5

Time 23.150: Allocate Fired
Time 23.150: Next-City Selected
Time 23.200: Next-City Fired
Time 23.200: Info-City Selected
Time 23.250: Info-City Fired
Time 23.250: Cityl Retrieved
Time 23.250: Store-City Selected
Time 23.300: Store-City Fired
Time 23.300: Eval-Inc Selected
Time 23.350: Eval-Inc Fired
Time 24.350: Failure Retrieved
Time 24.350: Failure-Eval Selected
Time 24.400: Failure-Eval Fired
Time 24.400: Better-Eval Selected
Time 24.450: Better-Eval Fired
Time 24.450: Next-City Selected
Time 24.500: Next-City Fired
Time 24.500: Info-City Selected
Time 24.550: Info-City Fired
Time 24.550: City2 Retrieved
Time 24.550: Store-City Selected
Time 24.600: Store-City Fired
Time 24.600: Eval-Inc Selected
Time 24.650: Eval-Inc Fired
Time 25.650: Failure Retrieved
Time 25.650: Failure-Eval Selected
Time 25.700: Failure-Eval Fired
Time 25.700: Worse-Eval Selected
Time 25.750: Worse-Eval Fired
Time 25.750: Next-City Selected
Time 25.800: Next-City Fired
Time 25.800: Info-City Selected
Time 25.850: Info-City Fired
Time 25.850: City3 Retrieved
Time 25.850: Store-City Selected
Time 25.900: Store-City Fired
Time 25.900: Eval-Inc Selected
Time 25.950: Eval-Inc Fired
Time 26.950: Failure Retrieved
Time 26.950: Failure-Eval Selected
Time 27.000: Failure-Eval Fired
Time 27.000: Worse-Eval Selected
Time 27.050: Worse-Eval Fired
Time 27.050: Next-City Selected
Time 27.100: Next-City Fired
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Time 27.100: Info-City Selected
Time 27.150: Info-City Fired
Time 27.150: Cityl Retrieved
Time 27.150: Wrong-City Selected
Time 27.200: Wrong-City Fired
Time 27.200: City4 Retrieved
Time 27.200: Store-City Selected
Time 27.250: Store-City Fired
Time 27.250: Eval-Inc Selected
Time 27.300: Eval-Inc Fired
Time 28.300: Failure Retrieved
Time 28.300: Failure-Eval Selected
Time 28.350: Failure-Eval Fired
Time 28.350: Worse-Eval Selected
Time 28.400: Worse-Eval Fired
Time 28.400: Next-City Selected
Time 28.450: Next-City Fired
Time 28.450: Info-City Selected
Time 28.500: Info-City Fired
Time 28.500: City5 Retrieved
Time 28.500: Store-City Selected
Time 28.550: Store-City Fired
Time 28.550: Eval-Inc Selected
Time 28.600: Eval-Inc Fired
Time 29.600: Failure Retrieved
Time 29.600: Failure-Eval Selected
Time 29.650: Failure-Eval Fired
Time 29.650: Worse-Eval Selected
Time 29.700: Worse-Eval Fired
Time 29.700: Follow-On-City Selected
Time 29.750: Follow-On-City Fired
Time 29.750: Follow-On-City Retrieved
Time 29.750: Eval-Follow-On Selected
Time 29.800: Eval-Follow-On Fired
Time 30.800: Failure Retrieved
Time 30.800: Compute-Follow-On Selected
Time 30.850: Compute-Follow-On Fired
Time 30.850: Allocate Selected

Allocating GBI to City 1
Optimal move: Allocate GBI to City 1

Time 30.900: Allocate Fired
Time 30.900: Next-City Selected
Time 30.950: Next-City Fired
Time 30.950: Info-City Selected
Time 31.000: Info-City Fired
Time 31.000: Cityl Retrieved
Time 31.000: Store-City Selected
Time 31.050: Store-City Fired
Time 31.050: Eval-Inc Selected
Time 31.100: Eval-Inc Fired
Time 32.100: Failure Retrieved
Time 32.100: Failure-Eval Selected
Time 32.150: Failure-Eval Fired
Time 32.150: Better-Eval Selected
Time 32.200: Better-Eval Fired
Time 32.200: Next-City Selected
Time 32.250: Next-City Fired
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Time 32.250: Info-City Selected
Time 32.300: Info-City Fired
Time 32.300: City2 Retrieved
Time 32.300: Store-City Selected
Time 32.350: Store-City Fired
Time 32.350: Eval-Inc Selected
Time 32.400: Eval-Inc Fired
Time 33.400: Failure Retrieved
Time 33.400: Failure-Eval Selected
Time 33.450: Failure-Eval Fired
Time 33.450: Worse-Eval Selected
Time 33.500: Worse-Eval Fired
Time 33.500: Next-City Selected
Time 33.550: Next-City Fired
Time 33.550: Info-City Selected
Time 33.600: Info-City Fired
Time 33.600: City3 Retrieved
Time 33.600: Store-City Selected
Time 33.650: Store-City Fired
Time 33.650: Eval-Inc Selected
Time 33.700: Eval-Inc Fired
Time 34.700: Failure Retrieved
Time 34.700: Failure-Eval Selected
Time 34.750: Failure-Eval Fired
Time 34.750: Better-Eval Selected
Time 34.800: Better-Eval Fired
Time 34.800: Next-City Selected
Time 34.850: Next-City Fired
Time 34.850: Info-City Selected
Time 34.900: Info-City Fired
Time 34.900: City4 Retrieved
Time 34.900: Store-City Selected
Time 34.950: Store-City Fired
Time 34.950: Eval-Inc Selected
Time 35.000: Eval-Inc Fired
Time 36.000: Failure Retrieved
Time 36.000: Failure-Eval Selected
Time 36.050: Failure-Eval Fired
Time 36.050: Better-Eval Selected
Time 36.100: Better-Eval Fired
Time 36.100: Next-City Selected
Time 36.150: Next-City Fired
Time 36.150: Info-City Selected
Time 36.200: Info-City Fired
Time 36.200: City5 Retrieved
Time 36.200: Store-City Selected
Time 36.250: Store-City Fired
Time 36.250: Eval-Inc Selected
Time 36.300: Eval-Inc Fired
Time 37.300: Failure Retrieved
Time 37.300: Failure-Eval Selected
Time 37.350: Failure-Eval Fired
Time 37.350: Better-Eval Selected
Time 37.400: Better-Eval Fired
Time 37.400: Follow-On-City Selected
Time 37.450: Follow-On-City Fired
Time 37.450: Follow-On-City Retrieved
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Time 37.450: Eval-Follow-On Selected
Time 37.500: Eval-Follow-On Fired
Time 38.500: Failure Retrieved
Time 38.500: Compute-Follow-On Selected
Time 38.550: Compute-Follow-On Fired
Time 38.550: Allocate Selected

Allocating GBI to City 5
Optimal move: no allocation (keep reserve level)

Time 38.600: Allocate Fired
Time 38.600: Next-City Selected
Time 38.650: Next-City Fired
Time 38.650: Info-City Selected
Time 38.700: Info-City Fired
Time 38.700: Cityl Retrieved
Time 38.700: Store-City Selected
Time 38.750: Store-City Fired
Time 38.750: Eval-Inc Selected
Time 38.800: Eval-Inc Fired
Time 39.800: Failure Retrieved
Time 39.800: Failure-Eval Selected
Time 39.850: Failure-Eval Fired
Time 39.850: Better-Eval Selected
Time 39.900: Better-Eval Fired
Time 39.900: Next-City Selected
Time 39.950: Next-City Fired
Time 39.950: Info-City Selected
Time 40.000: Info-City Fired
Time 40.000: City2 Retrieved
Time 40.000: Store-City Selected
Time 40.050: Store-City Fired
Time 40.050: Eval-Inc Selected
Time 40.100: Eval-Inc Fired
Time 41.100: Failure Retrieved
Time 41.100: Failure-Eval Selected
Time 41.150: Failure-Eval Fired
Time 41.150: Worse-Eval Selected
Time 41.200: Worse-Eval Fired
Time 41.200: Next-City Selected
Time 41.250: Next-City Fired
Time 41.250: Info-City Selected
Time 41.300: Info-City Fired
Time 41.300: City3 Retrieved
Time 41.300: Store-City Selected
Time 41.350: Store-City Fired
Time 41.350: Eval-Inc Selected
Time 41.400: Eval-Inc Fired
Time 42.400: Failure Retrieved
Time 42.400: Failure-Eval Selected
Time 42.450: Failure-Eval Fired
Time 42.450: Better-Eval Selected
Time 42.500: Better-Eval Fired
Time 42.500: Next-City Selected
Time 42.550: Next-City Fired
Time 42.550: Info-City Selected
Time 42.600: Info-City Fired
Time 42.600: City4 Retrieved
Time 42.600: Store-City Selected
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Time 42.650: Store-City Fired
Time 42.650: Eval-Inc Selected
Time 42.700: Eval-Inc Fired
Time 43.700: Failure Retrieved
Time 43.700: Failure-Eval Selected
Time 43.750: Failure-Eval Fired
Time 43.750: Worse-Eval Selected
Time 43.800: Worse-Eval Fired
Time 43.800: Next-City Selected
Time 43.850: Next-City Fired
Time 43.850: Info-City Selected
Time 43.900: Info-City Fired
Time 43.900: City5 Retrieved
Time 43.900: Store-City Selected
Time 43.950: Store-City Fired
Time 43.950: Eval-Inc Selected
Time 44.000: Eval-Inc Fired
Time 45.000: Failure Retrieved
Time 45.000: Failure-Eval Selected
Time 45.050: Failure-Eval Fired
Time 45.050: Worse-Eval Selected
Time 45.100: Worse-Eval Fired
Time 45.100: Follow-On-City Selected
Time 45.150: Follow-On-City Fired
Time 45.150: Follow-On-City Retrieved
Time 45.150: No-More-Missiles Selected
Time 45.200: No-More-Missiles Fired
Time 45.200: No-Allocate Selected

Desired missiles for city 1 population 978332 missiles allocated 2: 2
Desired missiles for city 2 population 344677 missiles allocated 1: 1
Desired missiles for city 3 population 250900 missiles allocated 0: 0
Desired missiles for city 4 population 1821557 missiles allocated 2: 2
Desired missiles for city 5 population 1728296 missiles allocated 3: 2
Desired missiles for follow-on city 6 population 2368000 probability 0.25
missiles left 0: 1

Time 45.250: No-Allocate Fired
Time 45.250: Next-Feedback Selected
Time 45.300: Next-Feedback Fired
Time 45.300: Feedback-City Selected
Time 45.350: Feedback-City Fired
Time 45.715: Feedback5 Retrieved
Time 45.715: Store-Feedback Selected
Time 45.765: Store-Feedback Fired
Time 45.765: Right-Allocation Selected
Time 45.815: Right-Allocation Fired
Time 45.815: Next-Feedback Selected
Time 45.865: Next-Feedback Fired
Time 45.865: Feedback-City Selected
Time 45.915: Feedback-City Fired
Time 46.047: Feedback6 Retrieved
Time 46.047: Store-Feedback Selected
Time 46.097: Store-Feedback Fired
Time 46.097: Right-Allocation Selected
Time 46.147: Right-Allocation Fired
Time 46.147: Next-Feedback Selected
Time 46.197: Next-Feedback Fired
Time 46.197: Feedback-City Selected
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Time 46.247: Feedback-City Fired
Time 46.451: Feedback7 Retrieved
Time 46.451: Store-Feedback Selected
Time 46.501: Store-Feedback Fired
Time 46.501: Right-Allocation Selected
Time 46.551: Right-Allocation Fired
Time 46.551: Next-Feedback Selected
Time 46.601: Next-Feedback Fired
Time 46.601: Feedback-City Selected
Time 46.651: Feedback-City Fired
Time 47.039: Feedback8 Retrieved
Time 47.039: Store-Feedback Selected
Time 47.089: Store-Feedback Fired
Time 47.089: Right-Allocation Selected
Time 47.139: Right-Allocation Fired
Time 47.139: Next-Feedback Selected
Time 47.189: Next-Feedback Fired
Time 47.189: Feedback-City Selected
Time 47.239: Feedback-City Fired
Time 47.521: Feedback9 Retrieved
Time 47.521: Store-Feedback Selected
Time 47.571: Store-Feedback Fired
Time 47.571: Less-Allocation Selected
Time 47.621: Less-Allocation Fired
Time 47.621: Next-Feedback Selected
Time 47.671: Next-Feedback Fired
Time 47.671: Feedback-City Selected
Time 47.721: Feedback-City Fired
Time 47.983: Feedbackl0 Retrieved
Time 47.983: Store-Follow-On Selected
Time 48.033: Store-Follow-On Fired
Time 48.033: More-Reserve Selected
Time 48.083: More-Reserve Fired
Time 48.083: End-Feedback Selected
Time 48.133: End-Feedback Fired
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Appendix 4: Experiment Instructions

- INSTRUCTIONS FOR ALL CONDITIONS: The Power Point you saw described how to add
and remove missiles interceptors, but it didn't cover one important detail. Any time you want to
save a certain distribution and move on, you have to hit the Reallocate button. If you want to
allocate missiles to one city, and then allocate missiles somewhere else, you must first hit the
Reallocate button before you move on. So essentially, this button is like a 'Save' button which
registers your decision. The same is true when you want to remove missiles. If you don't hit this
button, then anything you add or subtract will be erased. Also, if you make any last-second
changes, remember to hit the button before time expires or it won't be saved and submitted.
Moving on, in terms of the information you have to consider, keep in mind that besides the 5
cities presented here, there is another element involved. You also have to consider the possibility
of a future attack on another city. Any missile interceptors that you do not distribute will then be
reserved for the follow-on attack. So keep in mind that you have about 40 seconds to allocate
these resources, and that your goal ultimately is maximize the number of people saved. Good
luck.

- ADDENDUM, FOR FEEDBACK CONDITION: After each trial, you'll see a feedback
window. This screen describes what happened in this particular situation, like whether any cities
were attacked. It's also presents a comparison between your allocation of missile interceptors
and the optimal allocation. Lastly, there is a display of how many people would be expected to
be saved with your arrangement versus the optimal one.

- EXTRA ADDENDUM, FOR FEEDBACK BEEPING CONDITION: Along with the feedback
window, you will also be given another type of feedback, a more direct type. The beeping is a
cue that activates when you did not make the optimal decision for that particular step. When you
don't hear the beep, it means that you chose the most optimal choice for that specific step.
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